-
2
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
Rudin L., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992, 60:259-268.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
3
-
-
79251548920
-
Second order total generalized variation (TGV) for MRI
-
Knoll F., Bredies K., Pock T., Stollberger R. Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 2011, 65:480-491.
-
(2011)
Magn. Reson. Med.
, vol.65
, pp. 480-491
-
-
Knoll, F.1
Bredies, K.2
Pock, T.3
Stollberger, R.4
-
5
-
-
79955853315
-
TGV-fusion
-
Springer, Berlin, Heidelberg, C. Calude, G. Rozenberg, A. Salomaa (Eds.) Rainbow of Computer Science
-
Pock T., Zebedin L., Bischof H. TGV-fusion. Lecture Notes in Computer Science 2011, vol. 6570:245-258. Springer, Berlin, Heidelberg. C. Calude, G. Rozenberg, A. Salomaa (Eds.).
-
(2011)
Lecture Notes in Computer Science
, vol.6570
, pp. 245-258
-
-
Pock, T.1
Zebedin, L.2
Bischof, H.3
-
8
-
-
0038042413
-
Minimizers of cost functions involving nonsmooth data-fideltiy terms. Application of processing of outliers
-
Nikolova M. Minimizers of cost functions involving nonsmooth data-fideltiy terms. Application of processing of outliers. SIAM J. Numer. Anal. 2002, 40:965-994.
-
(2002)
SIAM J. Numer. Anal.
, vol.40
, pp. 965-994
-
-
Nikolova, M.1
-
10
-
-
77953827486
-
1-TV image restoration with automatic choice of regularization parameter
-
1-TV image restoration with automatic choice of regularization parameter. SIAM J. Sci. Comput. 2010, 32:1484-1505.
-
(2010)
SIAM J. Sci. Comput.
, vol.32
, pp. 1484-1505
-
-
Clason, C.1
Jin, B.2
Kunisch, K.3
-
11
-
-
76149100480
-
1 algorithm for deblurring multichannel images corrupted by impulsive noise
-
1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 2009, 31:2842-2865.
-
(2009)
SIAM J. Sci. Comput.
, vol.31
, pp. 2842-2865
-
-
Yang, J.1
Zhang, Y.2
Yin, W.3
-
13
-
-
78651594347
-
Characterization of minimizers of convex regularization functionals
-
Amer. Math. Soc., Providence, RI, Frames and operator theory in analysis and signal processing
-
Pöschl C., Scherzer O. Characterization of minimizers of convex regularization functionals. Contemp. Math. 2008, vol. 451:219-248. Amer. Math. Soc., Providence, RI.
-
(2008)
Contemp. Math.
, vol.451
, pp. 219-248
-
-
Pöschl, C.1
Scherzer, O.2
-
14
-
-
78651098798
-
A higher order model for image restoration: the one-dimensional case
-
Dal Maso G., Fonseca I., Leoni G., Morini M. A higher order model for image restoration: the one-dimensional case. SIAM J. Math. Anal. 2009, 40:2351-2391.
-
(2009)
SIAM J. Math. Anal.
, vol.40
, pp. 2351-2391
-
-
Dal Maso, G.1
Fonseca, I.2
Leoni, G.3
Morini, M.4
-
17
-
-
0013468395
-
Duality for the sum of convex functions in general Banach spaces
-
Elsevier, J.A. Barroso (Ed.) Aspects of Mathematics and its Applications
-
Attouch H., Brezis H. Duality for the sum of convex functions in general Banach spaces. North-Holland Mathematical Library 1986, vol. 34:125-133. Elsevier. J.A. Barroso (Ed.).
-
(1986)
North-Holland Mathematical Library
, vol.34
, pp. 125-133
-
-
Attouch, H.1
Brezis, H.2
-
18
-
-
0034412757
-
Structural properties of solutions to total variation regularization problems
-
Ring W. Structural properties of solutions to total variation regularization problems. ESAIM: Math. Model. Numer. Anal. 2000, 34:799-810.
-
(2000)
ESAIM: Math. Model. Numer. Anal.
, vol.34
, pp. 799-810
-
-
Ring, W.1
-
19
-
-
50949131499
-
The discontinuity set of solutions of the TV denoising problem and some extensions
-
Caselles V., Chambolle A., Novaga M. The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Model. Simul. 2008, 6:879-894.
-
(2008)
Multiscale Model. Simul.
, vol.6
, pp. 879-894
-
-
Caselles, V.1
Chambolle, A.2
Novaga, M.3
|