메뉴 건너뛰기




Volumn 7552 LNCS, Issue PART 1, 2012, Pages 669-676

Adaptive SVM-based classification increases performance of a MEG-based Brain-Computer Interface (BCI)

Author keywords

adaptive control; Brain Computer interface (BCI); Support Vector Machine (SVM)

Indexed keywords

ADAPTIVE CLASSIFIERS; ADAPTIVE CONTROL; BRAIN-COMPUTER INTERFACES (BCI); NON-STATIONARITIES; OFFLINE; ONLINE EXPERIMENT; TRAINING DATA;

EID: 84867688282     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-33269-2_84     Document Type: Conference Paper
Times cited : (31)

References (16)
  • 9
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • Lin, H.-T., Lin, C.-J., Weng, R.: A note on Platt's probabilistic outputs for support vector machines. Machine Learning 68, 267-276 (2007)
    • (2007) Machine Learning , vol.68 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.3
  • 10
    • 33746932071 scopus 로고    scopus 로고
    • A study on SMO-type decomposition methods for support vector machines
    • Chen, P.H., Fan, R.E., Lin, C.J.: A study on SMO-type decomposition methods for support vector machines. IEEE Transactions on Neural Networks 17, 893-908 (2006)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 893-908
    • Chen, P.H.1    Fan, R.E.2    Lin, C.J.3
  • 14
    • 72449143748 scopus 로고    scopus 로고
    • Unsupervised learning method for a support vector machine and its application to surface electromyogram recognition
    • doi:10.1007/s10015-009-0682-1
    • Tamura, H., Kawano, S., Tanno, K.: Unsupervised learning method for a support vector machine and its application to surface electromyogram recognition. Artificial Life and Robotics 14, 362-366 (2009), doi:10.1007/s10015-009-0682-1
    • (2009) Artificial Life and Robotics , vol.14 , pp. 362-366
    • Tamura, H.1    Kawano, S.2    Tanno, K.3
  • 15
    • 43249086679 scopus 로고    scopus 로고
    • A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
    • Li, Y., Guan, C., Li, H., Chin, Z.: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system. Pattern Recognition Letters 29(9), 1285-1294 (2008)
    • (2008) Pattern Recognition Letters , vol.29 , Issue.9 , pp. 1285-1294
    • Li, Y.1    Guan, C.2    Li, H.3    Chin, Z.4
  • 16
    • 84861686037 scopus 로고    scopus 로고
    • Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI
    • Spüler, M., Bensch, M., Kleih, S., Rosenstiel, W., Bogdan, M., Kübler, A.: Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI. Clinical Neurophysiology 123(7), 1328-1337 (2012)
    • (2012) Clinical Neurophysiology , vol.123 , Issue.7 , pp. 1328-1337
    • Spüler, M.1    Bensch, M.2    Kleih, S.3    Rosenstiel, W.4    Bogdan, M.5    Kübler, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.