메뉴 건너뛰기




Volumn 19, Issue 6, 2012, Pages 1011-1018

Vaccine adverse event text mining system for extracting features from vaccine safety reports

Author keywords

[No Author keywords available]

Indexed keywords

VACCINE;

EID: 84867670536     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2012-000881     Document Type: Article
Times cited : (41)

References (28)
  • 1
    • 84867683373 scopus 로고    scopus 로고
    • Guidance for Industry: Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment
    • Rockville: Food and Drug Administration
    • Food and Drug Administration. Guidance for Industry: Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment. Rockville: Food and Drug Administration, 2005.
    • (2005) Rockville: Food and Drug Administration
  • 2
    • 21544453050 scopus 로고    scopus 로고
    • Automated detection of adverse events using natural language processing of discharge summaries
    • Melton GB, Hripcsak G. Automated detection of adverse events using natural language processing of discharge summaries. J Am Med Inform Assoc 2005;12:448e57.
    • (2005) J Am Med Inform Assoc , vol.12 , pp. 448-457
    • Melton, G.B.1    Hripcsak, G.2
  • 3
    • 33847644460 scopus 로고    scopus 로고
    • Automated identification of adverse events related to central venous catheters
    • Penz JF, Wilcox AB, Hurdle JF. Automated identification of adverse events related to central venous catheters. J Biomed Inform 2007;40:174e82.
    • (2007) J Biomed Inform , vol.40 , pp. 174-182
    • Penz, J.F.1    Wilcox, A.B.2    Hurdle, J.F.3
  • 4
    • 70349440815 scopus 로고    scopus 로고
    • Rule-based information extraction from patients' clinical data
    • Mykowiecka A, Marciniak M, Kupsc A. Rule-based information extraction from patients' clinical data. J Biomed Inform 2009;42:923e36.
    • (2009) J Biomed Inform , vol.42 , pp. 923-936
    • Mykowiecka, A.1    Marciniak, M.2    Kupsc, A.3
  • 5
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: a review of recent research
    • Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform 2008:128e44.
    • (2008) Yearb Med Inform , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3
  • 6
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications
    • Savova GK, Masanz JJ, Ogren PV, et al. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010;17:507e13.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 507-513
    • Savova, G.K.1    Masanz, J.J.2    Ogren, P.V.3
  • 7
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM computing surveys (CSUR) 2002;34:47.
    • (2002) ACM computing surveys (CSUR) , vol.34 , pp. 47
    • Sebastiani, F.1
  • 8
    • 40749087717 scopus 로고    scopus 로고
    • Corpus annotation for mining biomedical events from literature
    • Kim JD, Ohta T, Tsujii J. Corpus annotation for mining biomedical events from literature. BMC Bioinformatics 2008;9:10.
    • (2008) BMC Bioinformatics , vol.9 , pp. 10
    • Kim, J.D.1    Ohta, T.2    Tsujii, J.3
  • 9
    • 70349473063 scopus 로고    scopus 로고
    • Automatically extracting cancer disease characteristics from pathology reports into a disease knowledge representation model
    • Coden A, Savova G, Sominsky I, et al. Automatically extracting cancer disease characteristics from pathology reports into a disease knowledge representation model. J Biomed Inform 2009;42:937e49.
    • (2009) J Biomed Inform , vol.42 , pp. 937-949
    • Coden, A.1    Savova, G.2    Sominsky, I.3
  • 10
    • 0034567167 scopus 로고    scopus 로고
    • A broad-coverage natural language processing system
    • Friedman C. A broad-coverage natural language processing system. Proc AMIA Symp 2000:270e4.
    • (2000) Proc AMIA Symp , pp. 270-274
    • Friedman, C.1
  • 11
    • 1942484441 scopus 로고    scopus 로고
    • Understanding vaccine safety information from the Vaccine Adverse Event Reporting System
    • Varricchio F, Iskander J, Destefano F, et al. Understanding vaccine safety information from the Vaccine Adverse Event Reporting System. Pediatr Infect Dis J 2004;23:287e94.
    • (2004) Pediatr Infect Dis J , vol.23 , pp. 287-294
    • Varricchio, F.1    Iskander, J.2    Destefano, F.3
  • 12
    • 0028403632 scopus 로고
    • A general natural-language text processor for clinical radiology
    • Friedman C, Alderson PO, Austin JH, et al. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc 1994;1:161e74.
    • (1994) J Am Med Inform Assoc , vol.1 , pp. 161-174
    • Friedman, C.1    Alderson, P.O.2    Austin, J.H.3
  • 13
    • 39049176205 scopus 로고    scopus 로고
    • Creating a vaccine adverse event ontology for public health
    • Herman TD, Liu F, Sagaram D, et al. Creating a vaccine adverse event ontology for public health. AMIA Annu Symp Proc 2005:978.
    • AMIA Annu Symp Proc , vol.2005 , pp. 978
    • Herman, T.D.1    Liu, F.2    Sagaram, D.3
  • 14
    • 16844378215 scopus 로고    scopus 로고
    • The JCAHO patient safety event taxonomy: a standardized terminology and classification schema for near misses and adverse events
    • Chang A, Schyve PM, Croteau RJ, et al. The JCAHO patient safety event taxonomy: a standardized terminology and classification schema for near misses and adverse events. Int J Qual Health Care 2005;17:95e105.
    • (2005) Int J Qual Health Care , vol.17 , pp. 95-105
    • Chang, A.1    Schyve, P.M.2    Croteau, R.J.3
  • 15
    • 27744487007 scopus 로고    scopus 로고
    • Text mining and ontologies in biomedicine: making sense of raw text
    • Spasic I, Ananiadou S, McNaught J, et al. Text mining and ontologies in biomedicine: making sense of raw text. Brief Bioinform 2005;6:239e51.
    • (2005) Brief Bioinform , vol.6 , pp. 239-251
    • Spasic, I.1    Ananiadou, S.2    McNaught, J.3
  • 18
    • 84877352801 scopus 로고    scopus 로고
    • Drugs@FDA Data Files(accessed 1 Oct 2010)
    • Drugs@FDA Data Files. http://www.fda.gov/Drugs/InformationOnDrugs/ucm079750.htm (accessed 1 Oct 2010).
  • 19
    • 77950477064 scopus 로고    scopus 로고
    • MedEx: a medication information extraction system for clinical narratives
    • Xu H, Stenner SP, Doan S, et al. MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc 2010;17:19e24.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 19-24
    • Xu, H.1    Stenner, S.P.2    Doan, S.3
  • 20
    • 4544280638 scopus 로고    scopus 로고
    • Automated encoding of clinical documents based on natural language processing
    • Friedman C, Shagina L, Lussier Y, et al. Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc 2004;11:392e402.
    • (2004) J Am Med Inform Assoc , vol.11 , pp. 392-402
    • Friedman, C.1    Shagina, L.2    Lussier, Y.3
  • 21
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • Chapman WW, Bridewell W, Hanbury P, et al. A simple algorithm for identifying negated findings and diseases in discharge summaries. J Biomed Inform 2001;34:301e10.
    • (2001) J Biomed Inform , vol.34 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3
  • 22
    • 70349470770 scopus 로고    scopus 로고
    • ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports
    • Harkema H, Dowling JN, Thornblade T, et al. ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. J Biomed Inform 2009;42:839e51.
    • (2009) J Biomed Inform , vol.42 , pp. 839-851
    • Harkema, H.1    Dowling, J.N.2    Thornblade, T.3
  • 23
    • 33748046130 scopus 로고    scopus 로고
    • Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system
    • Zeng QT, Goryachev S, Weiss S, et al. Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak 2006;6:30.
    • (2006) BMC Med Inform Decis Mak , vol.6 , pp. 30
    • Zeng, Q.T.1    Goryachev, S.2    Weiss, S.3
  • 24
    • 70349466623 scopus 로고    scopus 로고
    • Building a semantically annotated corpus of clinical texts
    • Roberts A, Gaizauskas R, Hepple M, et al. Building a semantically annotated corpus of clinical texts. J Biomed Inform 2009;42:950e66.
    • (2009) J Biomed Inform , vol.42 , pp. 950-966
    • Roberts, A.1    Gaizauskas, R.2    Hepple, M.3
  • 25
    • 80053260063 scopus 로고    scopus 로고
    • Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection
    • Botsis T, Nguyen MD, Woo EJ, et al. Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection. J Am Med Inform Assoc 2011;18:631e8.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 631-638
    • Botsis, T.1    Nguyen, M.D.2    Woo, E.J.3
  • 26
    • 34447313673 scopus 로고    scopus 로고
    • Anaphylaxis: case definition and guidelines for data collection, analysis, and presentation of immunization safety data
    • Ruggeberg JU, Gold MS, Bayas JM, et al. Anaphylaxis: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2007;25:5675e84.
    • (2007) Vaccine , vol.25 , pp. 5675-5684
    • Ruggeberg, J.U.1    Gold, M.S.2    Bayas, J.M.3
  • 28
    • 84877333039 scopus 로고    scopus 로고
    • ABC tool: Electronic Concultant(accessed 14 Jun 2012)
    • ABC tool: Electronic Concultant. http://brightoncollaboration.org/public/what-we-do/ capacity/abc.html (accessed 14 Jun 2012).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.