메뉴 건너뛰기




Volumn 7477 LNAI, Issue , 2012, Pages 193-200

Traffic sign classifier adaption by semi-supervised co-training

Author keywords

co training; self training; semi supervised

Indexed keywords

CO-TRAINING; DRIVER ASSISTANCE SYSTEM; EUROPEAN COUNTRIES; MULTI-CLASSIFIER; SELF-TRAINING; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING METHODS; STATISTICAL PATTERN CLASSIFICATION; TRAINING DATA; TRAINING METHODS;

EID: 84867628016     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-33212-8_18     Document Type: Conference Paper
Times cited : (7)

References (14)
  • 7
    • 84857398044 scopus 로고    scopus 로고
    • Semi-supervised Training Set Adaption to Unknown Countries for Traffic Sign Classifiers
    • Schwenker, F., Trentin, E. (eds.) PSL 2011. Springer, Heidelberg
    • Hillebrand, M., Wöhler, C., Kreßel, U., Kummert, F.: Semi-supervised Training Set Adaption to Unknown Countries for Traffic Sign Classifiers. In: Schwenker, F., Trentin, E. (eds.) PSL 2011. LNCS, vol. 7081, pp. 120-127. Springer, Heidelberg (2012)
    • (2012) LNCS , vol.7081 , pp. 120-127
    • Hillebrand, M.1    Wöhler, C.2    Kreßel, U.3    Kummert, F.4
  • 9
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Letters to Nature 401(1), 788-791 (1999)
    • (1999) Letters to Nature , vol.401 , Issue.1 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.