메뉴 건너뛰기




Volumn 219, Issue 4, 2012, Pages 1866-1873

Construction and separability of nonlinear soliton integrable couplings

Author keywords

Integrable couplings; Integrable equations; Soliton systems

Indexed keywords

INTEGRABLE COUPLING; INTEGRABLE EQUATIONS; SOLITON SYSTEMS;

EID: 84867577631     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.08.028     Document Type: Article
Times cited : (6)

References (13)
  • 1
    • 33845425573 scopus 로고    scopus 로고
    • Separable systems of coordinates for triangular Newton equations
    • K. Marciniak, and S. Rauch-Wojciechowski Separable systems of coordinates for triangular Newton equations Stud. Appl. Math. 118 2007 45
    • (2007) Stud. Appl. Math. , vol.118 , pp. 45
    • Marciniak, K.1    Rauch-Wojciechowski, S.2
  • 2
    • 0039165607 scopus 로고    scopus 로고
    • Integrable coupled KdV systems
    • M. Gurses, and A. Karasu Integrable coupled KdV systems J. Math. Phys. 39 1998 2103
    • (1998) J. Math. Phys. , vol.39 , pp. 2103
    • Gurses, M.1    Karasu, A.2
  • 4
    • 0000913370 scopus 로고    scopus 로고
    • Integrable theory of the perturbation equations
    • W.X. Ma, and B. Fuchssteiner Integrable theory of the perturbation equations Chaos Solitons Fract. 7 1996 1227
    • (1996) Chaos Solitons Fract. , vol.7 , pp. 1227
    • Ma, W.X.1    Fuchssteiner, B.2
  • 5
    • 0003043248 scopus 로고    scopus 로고
    • Integrable couplings of soliton equations by perturbations
    • W.X. Ma Integrable couplings of soliton equations by perturbations Methods Appl. Anal. 7 2000 21
    • (2000) Methods Appl. Anal. , vol.7 , pp. 21
    • Ma, W.X.1
  • 6
    • 77949819380 scopus 로고    scopus 로고
    • Variational identities and Hamiltonian structures, in: Nonlinear and modern mathematical physics
    • Melville, NY
    • W.X. Ma, Variational identities and Hamiltonian structures, in: Nonlinear and modern mathematical physics, AIP Conf. Proc., 1212, The American Institute of Physics, Melville, NY, 2010, pp. 1-27.
    • (2010) AIP Conf. Proc., 1212, the American Institute of Physics , pp. 1-27
    • Ma, W.X.1
  • 7
    • 77957866861 scopus 로고    scopus 로고
    • Constructing nonlinear discrete integrable Hamiltonian couplings
    • W.X. Ma, and Z.N. Zhu Constructing nonlinear discrete integrable Hamiltonian couplings Comput. Math. Appl. 60 2010 2601
    • (2010) Comput. Math. Appl. , vol.60 , pp. 2601
    • Ma, W.X.1    Zhu, Z.N.2
  • 8
    • 79952760460 scopus 로고    scopus 로고
    • Nonlinear continuous integrable Hamiltonian couplings
    • W.X. Ma Nonlinear continuous integrable Hamiltonian couplings Appl. Math. Comput. 217 2011 7238
    • (2011) Appl. Math. Comput. , vol.217 , pp. 7238
    • Ma, W.X.1
  • 9
    • 79952534265 scopus 로고    scopus 로고
    • A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure
    • F. Yu A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure Phys. Lett. A 375 2011 1504
    • (2011) Phys. Lett. A , vol.375 , pp. 1504
    • Yu, F.1
  • 10
    • 81555196324 scopus 로고    scopus 로고
    • Lie algebras for constructing nonlinear integrable couplings
    • Y.F. Zhang Lie algebras for constructing nonlinear integrable couplings Commun. Theor. Phys. 56 2011 805
    • (2011) Commun. Theor. Phys. , vol.56 , pp. 805
    • Zhang, Y.F.1
  • 11
    • 84863029765 scopus 로고    scopus 로고
    • The generalized Broer-Kaup-Kupershmidt system and its Hamiltonian extension
    • T. Chen, L.L. Zhu, and L. Zhang The generalized Broer-Kaup-Kupershmidt system and its Hamiltonian extension Appl. Math. Sci. 5 2011 3767
    • (2011) Appl. Math. Sci. , vol.5 , pp. 3767
    • Chen, T.1    Zhu, L.L.2    Zhang, L.3
  • 12
    • 84857940005 scopus 로고    scopus 로고
    • Loop algebras and bi-integrable couplings
    • W.X. Ma Loop algebras and bi-integrable couplings Chin. Ann. Math. B 33 2012 207
    • (2012) Chin. Ann. Math. B , vol.33 , pp. 207
    • Ma, W.X.1
  • 13
    • 70449574336 scopus 로고    scopus 로고
    • Classical R-matrix theory for bi-Hamiltonian field systems
    • M. Błaszak, and B.M. Szablikowski Classical R-matrix theory for bi-Hamiltonian field systems J. Phys. A Math. Theor. 42 2009 404002
    • (2009) J. Phys. A Math. Theor. , vol.42 , pp. 404002
    • Błaszak, M.1    Szablikowski, B.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.