-
1
-
-
33845425573
-
Separable systems of coordinates for triangular Newton equations
-
K. Marciniak, and S. Rauch-Wojciechowski Separable systems of coordinates for triangular Newton equations Stud. Appl. Math. 118 2007 45
-
(2007)
Stud. Appl. Math.
, vol.118
, pp. 45
-
-
Marciniak, K.1
Rauch-Wojciechowski, S.2
-
2
-
-
0039165607
-
Integrable coupled KdV systems
-
M. Gurses, and A. Karasu Integrable coupled KdV systems J. Math. Phys. 39 1998 2103
-
(1998)
J. Math. Phys.
, vol.39
, pp. 2103
-
-
Gurses, M.1
Karasu, A.2
-
4
-
-
0000913370
-
Integrable theory of the perturbation equations
-
W.X. Ma, and B. Fuchssteiner Integrable theory of the perturbation equations Chaos Solitons Fract. 7 1996 1227
-
(1996)
Chaos Solitons Fract.
, vol.7
, pp. 1227
-
-
Ma, W.X.1
Fuchssteiner, B.2
-
5
-
-
0003043248
-
Integrable couplings of soliton equations by perturbations
-
W.X. Ma Integrable couplings of soliton equations by perturbations Methods Appl. Anal. 7 2000 21
-
(2000)
Methods Appl. Anal.
, vol.7
, pp. 21
-
-
Ma, W.X.1
-
6
-
-
77949819380
-
Variational identities and Hamiltonian structures, in: Nonlinear and modern mathematical physics
-
Melville, NY
-
W.X. Ma, Variational identities and Hamiltonian structures, in: Nonlinear and modern mathematical physics, AIP Conf. Proc., 1212, The American Institute of Physics, Melville, NY, 2010, pp. 1-27.
-
(2010)
AIP Conf. Proc., 1212, the American Institute of Physics
, pp. 1-27
-
-
Ma, W.X.1
-
7
-
-
77957866861
-
Constructing nonlinear discrete integrable Hamiltonian couplings
-
W.X. Ma, and Z.N. Zhu Constructing nonlinear discrete integrable Hamiltonian couplings Comput. Math. Appl. 60 2010 2601
-
(2010)
Comput. Math. Appl.
, vol.60
, pp. 2601
-
-
Ma, W.X.1
Zhu, Z.N.2
-
8
-
-
79952760460
-
Nonlinear continuous integrable Hamiltonian couplings
-
W.X. Ma Nonlinear continuous integrable Hamiltonian couplings Appl. Math. Comput. 217 2011 7238
-
(2011)
Appl. Math. Comput.
, vol.217
, pp. 7238
-
-
Ma, W.X.1
-
9
-
-
79952534265
-
A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure
-
F. Yu A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure Phys. Lett. A 375 2011 1504
-
(2011)
Phys. Lett. A
, vol.375
, pp. 1504
-
-
Yu, F.1
-
10
-
-
81555196324
-
Lie algebras for constructing nonlinear integrable couplings
-
Y.F. Zhang Lie algebras for constructing nonlinear integrable couplings Commun. Theor. Phys. 56 2011 805
-
(2011)
Commun. Theor. Phys.
, vol.56
, pp. 805
-
-
Zhang, Y.F.1
-
11
-
-
84863029765
-
The generalized Broer-Kaup-Kupershmidt system and its Hamiltonian extension
-
T. Chen, L.L. Zhu, and L. Zhang The generalized Broer-Kaup-Kupershmidt system and its Hamiltonian extension Appl. Math. Sci. 5 2011 3767
-
(2011)
Appl. Math. Sci.
, vol.5
, pp. 3767
-
-
Chen, T.1
Zhu, L.L.2
Zhang, L.3
-
12
-
-
84857940005
-
Loop algebras and bi-integrable couplings
-
W.X. Ma Loop algebras and bi-integrable couplings Chin. Ann. Math. B 33 2012 207
-
(2012)
Chin. Ann. Math. B
, vol.33
, pp. 207
-
-
Ma, W.X.1
-
13
-
-
70449574336
-
Classical R-matrix theory for bi-Hamiltonian field systems
-
M. Błaszak, and B.M. Szablikowski Classical R-matrix theory for bi-Hamiltonian field systems J. Phys. A Math. Theor. 42 2009 404002
-
(2009)
J. Phys. A Math. Theor.
, vol.42
, pp. 404002
-
-
Błaszak, M.1
Szablikowski, B.M.2
|