메뉴 건너뛰기




Volumn 219, Issue 4, 2012, Pages 2246-2259

Convergence analysis and performance of an extended central force optimization algorithm

Author keywords

Convergence analysis; Extended enhanced central force optimization (ECFO); Global optimization; Gravitational force; Simple central force optimization (SCFO)

Indexed keywords

BENCHMARK FUNCTIONS; COMPLEX CHARACTERISTICS; COMPLEX PLANES; CONVERGENCE ANALYSIS; CONVERGENCE CONDITIONS; EIGENVALUES; FORCE OPTIMIZATION; GLOBAL SEARCH ABILITY; GLOBAL SEARCHING ABILITY; GRAVITATIONAL FORCES; HISTORICAL INFORMATION; OPTIMIZATION ALGORITHMS; SECOND ORDERS; STABILITY CONDITION; STABILITY THEORIES;

EID: 84867575608     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2012.08.071     Document Type: Article
Times cited : (22)

References (41)
  • 1
    • 84867575717 scopus 로고    scopus 로고
    • second ed. Tsinghua University Press Beijing (in Chinese)
    • B. Chen Modern Heuristic second ed. 2007 Tsinghua University Press Beijing (in Chinese)
    • (2007) Modern Heuristic
    • Chen, B.1
  • 2
    • 27944511428 scopus 로고    scopus 로고
    • A novel optimization algorithm: Space gravitational optimization
    • Y. Hsiao, C. Chuang, and J. Jiang A novel optimization algorithm: space gravitational optimization IEEE Int. Conf. Syst. Man Cyb. 3 2005 2323 2328
    • (2005) IEEE Int. Conf. Syst. Man Cyb. , vol.3 , pp. 2323-2328
    • Hsiao, Y.1    Chuang, C.2    Jiang, J.3
  • 4
    • 0030285553 scopus 로고    scopus 로고
    • Genetic algorithms and their applications
    • K.S. Tang, K.F. Man, and S. Kwong Genetic algorithms and their applications IEEE Signal Proc. Mag. 13 6 1996 22 37
    • (1996) IEEE Signal Proc. Mag. , vol.13 , Issue.6 , pp. 22-37
    • Tang, K.S.1    Man, K.F.2    Kwong, S.3
  • 5
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
    • R. Storn, and K. Price Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces J. Global Optimiz. 11 1997 341 359
    • (1997) J. Global Optimiz. , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 6
    • 0034546374 scopus 로고    scopus 로고
    • Architecture for an Artificial Immune System
    • S.A. Hofmeyr, and S. Forrest Architecture for an Artificial Immune System Evol. Comput. 8 4 2000 443 473
    • (2000) Evol. Comput. , vol.8 , Issue.4 , pp. 443-473
    • Hofmeyr, S.A.1    Forrest, S.2
  • 8
    • 81155148313 scopus 로고    scopus 로고
    • Development and investigation of efficient artificial bee colony algorithm for numerical function optimization
    • G. Li, P. Niua, and X. Xiao Development and investigation of efficient artificial bee colony algorithm for numerical function optimization Appl. Soft Comput. 12 2012 320 332
    • (2012) Appl. Soft Comput. , vol.12 , pp. 320-332
    • Li, G.1    Niua, P.2    Xiao, X.3
  • 9
    • 80053562544 scopus 로고    scopus 로고
    • Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior
    • H. Tsai, and Y. Lin Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior Appl. Soft Comput. 11 2011 5367 5374
    • (2011) Appl. Soft Comput. , vol.11 , pp. 5367-5374
    • Tsai, H.1    Lin, Y.2
  • 10
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • F.V.D. Bergh, and A.P. Engelbrecht A study of particle swarm optimization particle trajectories Inform. Sci. 176 2006 937 971
    • (2006) Inform. Sci. , vol.176 , pp. 937-971
    • Bergh, F.V.D.1    Engelbrecht, A.P.2
  • 11
    • 33846561118 scopus 로고    scopus 로고
    • Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm
    • M. Jiang, Y.P. Luo, and S.Y. Yang Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm Inform. Proc. Lett. 102 2007 8 16
    • (2007) Inform. Proc. Lett. , vol.102 , pp. 8-16
    • Jiang, M.1    Luo, Y.P.2    Yang, S.Y.3
  • 12
    • 33244474874 scopus 로고    scopus 로고
    • Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization
    • M. Eusuff, K. Lansey, and F. Pasha Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization Eng. Optimiz. 38 2 2006 129 154
    • (2006) Eng. Optimiz. , vol.38 , Issue.2 , pp. 129-154
    • Eusuff, M.1    Lansey, K.2    Pasha, F.3
  • 14
    • 0036608987 scopus 로고    scopus 로고
    • Biomimicry of bacterial foraging for distributed optimization and control
    • K.M. Passino Biomimicry of bacterial foraging for distributed optimization and control IEEE Control Syst. Mag. 22 3 2002 52 67
    • (2002) IEEE Control Syst. Mag. , vol.22 , Issue.3 , pp. 52-67
    • Passino, K.M.1
  • 15
    • 70349873857 scopus 로고    scopus 로고
    • Group search optimizer: An optimization algorithm inspired by animal searching behavior
    • S. He, Q.H. Wu, and J.R. Saunders Group search optimizer: an optimization algorithm inspired by animal searching behavior IEEE Trans. Evol. Comput. 13 5 2009 973 990
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.5 , pp. 973-990
    • He, S.1    Wu, Q.H.2    Saunders, J.R.3
  • 16
    • 84855278833 scopus 로고    scopus 로고
    • Memetic algorithms and memetic computing optimization: A literature review
    • F. Neri, and C. Cotta Memetic algorithms and memetic computing optimization: a literature review Swarm Evol. Comput. 2 2012 1 14
    • (2012) Swarm Evol. Comput. , vol.2 , pp. 1-14
    • Neri, F.1    Cotta, C.2
  • 20
    • 34548627575 scopus 로고    scopus 로고
    • Central force optimization: A new metaheuristic with applications in applied electromagnetics
    • R.A. Formato Central force optimization: a new metaheuristic with applications in applied electromagnetics Prog. Electromag. Res. (PIER) 77 2007 425 491
    • (2007) Prog. Electromag. Res. (PIER) , vol.77 , pp. 425-491
    • Formato, R.A.1
  • 21
    • 44949098256 scopus 로고    scopus 로고
    • Central force optimization: A new nature inspired computational framework for multidimensional search and optimization
    • R.A. Formato Central force optimization: a new nature inspired computational framework for multidimensional search and optimization Studies Comput. Intell. 129 2008 221 238
    • (2008) Studies Comput. Intell. , vol.129 , pp. 221-238
    • Formato, R.A.1
  • 22
    • 77953492407 scopus 로고    scopus 로고
    • Central force optimisation: A new gradient-like metaheuristic for multidimensional search and optimization
    • R.A. Formato Central force optimisation: a new gradient-like metaheuristic for multidimensional search and optimization Int. J. Biomed. Comput. 1 4 2009 217 238
    • (2009) Int. J. Biomed. Comput. , vol.1 , Issue.4 , pp. 217-238
    • Formato, R.A.1
  • 23
    • 77953498874 scopus 로고    scopus 로고
    • Central force optimization: A new deterministic gradient-like optimization metaheuristic
    • R.A. Formato Central force optimization: a new deterministic gradient-like optimization metaheuristic OPSEARCH 46 1 2009 25 51
    • (2009) OPSEARCH , vol.46 , Issue.1 , pp. 25-51
    • Formato, R.A.1
  • 25
    • 79956111266 scopus 로고    scopus 로고
    • Central Force Optimization with variable initial probes and adaptive decision space
    • R.A. Formato Central Force Optimization with variable initial probes and adaptive decision space Appl. Math. Comput. 217 2011 8866 8872
    • (2011) Appl. Math. Comput. , vol.217 , pp. 8866-8872
    • Formato, R.A.1
  • 26
    • 77953493776 scopus 로고    scopus 로고
    • Antenna benchmark performance and array synthesis using central force optimization
    • G.M. Qubati, R.A. Formato, and N.I. Dib Antenna benchmark performance and array synthesis using central force optimization IET Microwaves Antennas Propag. 4 5 2010 583 592
    • (2010) IET Microwaves Antennas Propag. , vol.4 , Issue.5 , pp. 583-592
    • Qubati, G.M.1    Formato, R.A.2    Dib, N.I.3
  • 27
    • 81855221704 scopus 로고    scopus 로고
    • Training neural networks using Central Force Optimization and Particle Swarm Optimization: Insights and comparisons
    • R.C. Green II, L. Wang, and M. Alam Training neural networks using Central Force Optimization and Particle Swarm Optimization: insights and comparisons Expert Syst. Appl. 39 2012 555 563
    • (2012) Expert Syst. Appl. , vol.39 , pp. 555-563
    • Green, I.I.R.C.1    Wang, L.2    Alam, M.3
  • 28
    • 80355145132 scopus 로고    scopus 로고
    • A convergence proof and parameter analysis of central force optimization algorithm
    • D. Ding, X. Luo, and J. Chen A convergence proof and parameter analysis of central force optimization algorithm J. Convergence Inform. 6 10 2011 16 23
    • (2011) J. Convergence Inform. , vol.6 , Issue.10 , pp. 16-23
    • Ding, D.1    Luo, X.2    Chen, J.3
  • 29
    • 84867922216 scopus 로고    scopus 로고
    • An electromagnetism-like mechanism for global optimization
    • S.I. BIRBIL, and S. FANG An electromagnetism-like mechanism for global optimization J. Global Optim. 25 2003 263 282
    • (2003) J. Global Optim. , vol.25 , pp. 263-282
    • Birbil, S.I.1    Fang, S.2
  • 30
    • 80052328147 scopus 로고    scopus 로고
    • Convergence analysis and performance of the extended artificial physics optimization algorithm
    • L. Xie, J. Zeng, and R.A. Formato Convergence analysis and performance of the extended artificial physics optimization algorithm Appl. Math. Comput. 218 2011 4000 4011
    • (2011) Appl. Math. Comput. , vol.218 , pp. 4000-4011
    • Xie, L.1    Zeng, J.2    Formato, R.A.3
  • 32
    • 77953850277 scopus 로고    scopus 로고
    • Integrated radiation optimization: Inspired by the gravitational radiation in the curvature of space-time
    • C. Chuang, and J. Jiang Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space-time IEEE Cong. Evol. Comput. (CEC) 25-28 2007 3157 3164
    • (2007) IEEE Cong. Evol. Comput. (CEC) , vol.25-28 , pp. 3157-3164
    • Chuang, C.1    Jiang, J.2
  • 35
    • 84860885124 scopus 로고    scopus 로고
    • Detection of leakage freshwater and friction factor calibration in drinking networks using central force optimization
    • A. Haghighi, and H.M. Ramos Detection of leakage freshwater and friction factor calibration in drinking networks using central force optimization Water Resour. Manag. 26 2012 2347 2363
    • (2012) Water Resour. Manag. , vol.26 , pp. 2347-2363
    • Haghighi, A.1    Ramos, H.M.2
  • 36
    • 84865646259 scopus 로고    scopus 로고
    • Central force optimization on a GPU: A case study in high performance metaheuristics
    • 10.1007/s11227-011-0725-y
    • R.C. Green, L. Wang, and M. Alam Central force optimization on a GPU: a case study in high performance metaheuristics J. Supercomput. 2012 10.1007/s11227-011-0725-y
    • (2012) J. Supercomput.
    • Green, R.C.1    Wang, L.2    Alam, M.3
  • 37
    • 22344432656 scopus 로고    scopus 로고
    • Comparison among five evolutionary-based optimization algorithms
    • E. Elbeltagi, T. Hegazy, and D. Grierson Comparison among five evolutionary-based optimization algorithms Adv. Eng. Inform. 19 2005 43 53
    • (2005) Adv. Eng. Inform. , vol.19 , pp. 43-53
    • Elbeltagi, E.1    Hegazy, T.2    Grierson, D.3
  • 38
    • 67349254131 scopus 로고    scopus 로고
    • Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization
    • J. Chen, B. Xin, and Z. Peng Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization IEEE Trans. Man Cybern. A 39 3 2009 1083 4427
    • (2009) IEEE Trans. Man Cybern. A , vol.39 , Issue.3 , pp. 1083-4427
    • Chen, J.1    Xin, B.2    Peng, Z.3
  • 40
    • 0032685734 scopus 로고    scopus 로고
    • Evolutionary programming made faster
    • X. Yao, Y. Liu, and G. Lin Evolutionary programming made faster IEEE Trans. Evol. Comput. 3 2 1999 82 102
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , Issue.2 , pp. 82-102
    • Yao, X.1    Liu, Y.2    Lin, G.3
  • 41
    • 78049258718 scopus 로고    scopus 로고
    • Parameter analysis based on stochastic model for differential evolution algorithm
    • L. Wang, and F. Huang Parameter analysis based on stochastic model for differential evolution algorithm Appl. Math. Comput. 217 2010 3263 3273
    • (2010) Appl. Math. Comput. , vol.217 , pp. 3263-3273
    • Wang, L.1    Huang, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.