-
1
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B, 58(1):267-288, 1996.
-
(1996)
J. Royal. Statist. Soc B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
3
-
-
68649086910
-
Simultaneous analysis of lasso and dantzig selector
-
P.J. Bickel, Y. Ritov, and A.B. Tsybakov. Simultaneous analysis of lasso and dantzig selector. The Annals of Statistics, 37(4):1705-1732, 2009.
-
(2009)
The Annals of Statistics
, vol.37
, Issue.4
, pp. 1705-1732
-
-
Bickel, P.J.1
Ritov, Y.2
Tsybakov, A.B.3
-
8
-
-
33947416035
-
Near optimal signal recovery from random projections: Universal encoding strategies?
-
E. J. Candès and T. Tao. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. on Info. Theory, 2006.
-
(2006)
IEEE Trans. on Info. Theory
-
-
Candès, E.J.1
Tao, T.2
-
9
-
-
30844461481
-
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
-
J.A. Tropp. Algorithms for simultaneous sparse approximation. part ii: Convex relaxation. Signal Processing, 86(3):589-602, 2006.
-
(2006)
Signal Processing
, vol.86
, Issue.3
, pp. 589-602
-
-
Tropp, J.A.1
-
10
-
-
71149113559
-
Group lasso with overlap and graph lasso
-
L. Jacob, G. Obozinski, and J.P. Vert. Group lasso with overlap and graph lasso. In ICML, 2009.
-
(2009)
ICML
-
-
Jacob, L.1
Obozinski, G.2
Vert, J.P.3
-
12
-
-
84867558004
-
Sublinear time, approximate model-based sparse recovery for all
-
A. Kyrillidis and V. Cevher. Sublinear time, approximate model-based sparse recovery for all. EPFL Technical report, 2011.
-
(2011)
EPFL Technical Report
-
-
Kyrillidis, A.1
Cevher, V.2
-
14
-
-
79951614166
-
Compressive sensing recovery of spike trains using a structured sparsity model
-
C. Hegde, M.F. Duarte, and V. Cevher. Compressive sensing recovery of spike trains using a structured sparsity model. SPARS, 2009.
-
(2009)
SPARS
-
-
Hegde, C.1
Duarte, M.F.2
Cevher, V.3
-
16
-
-
84857156018
-
Combinatorial selection and least absolute shrinkage via the CLASH algorithm
-
A. Kyrillidis and V. Cevher. Combinatorial selection and least absolute shrinkage via the CLASH algorithm. EPFL Technical Report, 2011.
-
(2011)
EPFL Technical Report
-
-
Kyrillidis, A.1
Cevher, V.2
-
17
-
-
62749175137
-
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
-
D. Needell and J. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301-312, 2008.
-
(2008)
Applied and Computational Harmonic Analysis
, vol.26
, Issue.3
, pp. 301-312
-
-
Needell, D.1
Tropp, J.2
-
18
-
-
65749110333
-
Subspace pursuit for compressive sensing signal reconstruction
-
W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. on Inf. Theory, 2009.
-
(2009)
IEEE Trans. on Inf. Theory
-
-
Dai, W.1
Milenkovic, O.2
-
20
-
-
77949694214
-
Compressed sensing with cross validation
-
R. Ward. Compressed sensing with cross validation. IEEE Trans. on Info. Theory, 2009.
-
(2009)
IEEE Trans. on Info. Theory
-
-
Ward, R.1
-
24
-
-
77949525869
-
Recovery of clustered sparse signals from compressive measurements
-
V. Cevher, P. Indyk, C. Hegde, and R.G. Baraniuk. Recovery of clustered sparse signals from compressive measurements. SAMPTA, 2009.
-
(2009)
SAMPTA
-
-
Cevher, V.1
Indyk, P.2
Hegde, C.3
Baraniuk, R.G.4
|