메뉴 건너뛰기




Volumn 34, Issue 1, 2013, Pages 15-29

Multiscale data sampling and function extension

Author keywords

Diffusion maps; Gaussian kernel; Geometric harmonics; Multiscale; Nystr m extension; Subsampling

Indexed keywords

DIFFUSION MAPS; GAUSSIAN KERNELS; GEOMETRIC HARMONICS; MULTISCALES; SUBSAMPLING;

EID: 84867402820     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2012.03.002     Document Type: Article
Times cited : (59)

References (17)
  • 6
    • 33745398604 scopus 로고    scopus 로고
    • Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
    • R.R. Coifman, and S. Lafon Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions Appl. Comput. Harmon. Anal. 21 2006 31 52
    • (2006) Appl. Comput. Harmon. Anal. , vol.21 , pp. 31-52
    • Coifman, R.R.1    Lafon, S.2
  • 8
    • 0030571096 scopus 로고    scopus 로고
    • Multistep scattered data interpolation using compactly supported radial basis functions
    • M.S. Floater, and A. Iske Multistep scattered data interpolation using compactly supported radial basis functions J. Comput. Appl. Math. 73 1996 65 78
    • (1996) J. Comput. Appl. Math. , vol.73 , pp. 65-78
    • Floater, M.S.1    Iske, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.