메뉴 건너뛰기




Volumn 2, Issue 6, 2011, Pages 322-329

Analyzing growth trajectories

Author keywords

data depth contours; growth curves; nonparametric Bayes

Indexed keywords


EID: 84867360754     PISSN: 20401744     EISSN: 20401752     Source Type: Journal    
DOI: 10.1017/S2040174411000572     Document Type: Article
Times cited : (31)

References (41)
  • 2
    • 0034935611 scopus 로고    scopus 로고
    • Relationships between biological parameters of Japanese growth of height
    • DOI 10.1002/env.463
    • Sumiya T, Tashima T, Nakahara H, Shohoji T. Relationships between biological parameters of Japanese growth of height. Environmetrics. 2001; 12, 367-382. (Pubitemid 32623819)
    • (2001) Environmetrics , vol.12 , Issue.4 , pp. 367-382
    • Sumiya, T.1    Tashima, T.2    Nakahara, H.3    Shohoji, T.4
  • 3
    • 70349484834 scopus 로고    scopus 로고
    • Functional mapping of human growth trajectories
    • Li N, Das K, Wu R. Functional mapping of human growth trajectories. J Theor Biol. 2009; 261, 33-42.
    • (2009) J Theor Biol , vol.261 , pp. 33-42
    • Li, N.1    Das, K.2    Wu, R.3
  • 4
    • 84867393129 scopus 로고    scopus 로고
    • Recovering gradients from sparsely observed functional data
    • under revision
    • López-Pintado S, McKeague IW. Recovering gradients from sparsely observed functional data. Biometrics. 2011, under revision; http://www.columbia. edu/,im2131/ps/growthratepackage-reference.pdf
    • (2011) Biometrics
    • López-Pintado, S.1    McKeague, I.W.2
  • 5
    • 66549091623 scopus 로고    scopus 로고
    • On the concept of depth for functional data
    • López-Pintado S, Romo J. On the concept of depth for functional data. J Amer Stat Assoc. 2009; 104, 718-734.
    • (2009) J Amer Stat Assoc , vol.104 , pp. 718-734
    • López-Pintado, S.1    Romo, J.2
  • 9
    • 33747153005 scopus 로고    scopus 로고
    • Properties of principal component methods for functional and longitudinal data analysis
    • DOI 10.1214/009053606000000272
    • Hall P, Müller HG, Wang JL. Properties of principal components methods for functional and longitudinal data analysis. Ann Stat. 2006; 34, 1493-1517. (Pubitemid 44231170)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1493-1517
    • Hall, P.1    Muller, H.-G.2    Wang, J.-L.3
  • 10
    • 0001699048 scopus 로고    scopus 로고
    • Principal component models for sparse functional data
    • James G, Hastie TJ, Sugar CA. Principal component models for sparse functional data. Biometrika. 2000; 87, 587-602.
    • (2000) Biometrika , vol.87 , pp. 587-602
    • James, G.1    Hastie, T.J.2    Sugar, C.A.3
  • 11
    • 0035106736 scopus 로고    scopus 로고
    • Nonparametric mixed effects models for unequally sampled noisy curves
    • Rice J, Wu C. Nonparametric mixed effects models for unequally sampled noisy curves. Biometrics. 2000; 57, 253-259. (Pubitemid 32200164)
    • (2001) Biometrics , vol.57 , Issue.1 , pp. 253-259
    • Rice, J.A.1    Wu, C.O.2
  • 13
    • 19744369661 scopus 로고    scopus 로고
    • Functional linear regression analysis for longitudinal data
    • DOI 10.1214/009053605000000660
    • Yao F, Müller HG, Wang JL. Functional linear regression analysis for longitudinal data. Ann Stat. 2005; 33, 2873-2903. (Pubitemid 43384879)
    • (2005) Annals of Statistics , vol.33 , Issue.6 , pp. 2873-2903
    • Yao, F.1    Muller, H.-G.2    Wang, J.-L.3
  • 15
    • 84968487240 scopus 로고
    • Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind
    • Nashed MZ, Wahba G. Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind. Math Comput. 1974; 28, 69-80.
    • (1974) Math Comput , vol.28 , pp. 69-80
    • Nashed, M.Z.1    Wahba, G.2
  • 16
    • 0000544453 scopus 로고
    • Practical approximate solutions to linear operator equations when the data are noisy
    • Wahba G. Practical approximate solutions to linear operator equations when the data are noisy. SIAM J Numer Anal. 1977; 14, 651-667.
    • (1977) SIAM J Numer Anal , vol.14 , pp. 651-667
    • Wahba, G.1
  • 17
    • 66549101908 scopus 로고    scopus 로고
    • Estimating derivatives for samples of sparsely observed functions, with application to online auction dynamics
    • Liu B, Müller HG. Estimating derivatives for samples of sparsely observed functions, with application to online auction dynamics. J Amer Stat Assoc. 2009; 104, 704-717.
    • (2009) J Amer Stat Assoc , vol.104 , pp. 704-717
    • Liu, B.1    Müller, H.G.2
  • 19
    • 0039511055 scopus 로고
    • A prediction of individual growth of height according to an empirical Bayesian approach
    • Shohoji T, Kanefuji K, Sumiya T, Qin T. A prediction of individual growth of height according to an empirical Bayesian approach. Ann Inst Stat Math. 1991; 43, 607-619.
    • (1991) Ann Inst Stat Math , vol.43 , pp. 607-619
    • Shohoji, T.1    Kanefuji, K.2    Sumiya, T.3    Qin, T.4
  • 20
    • 0029085644 scopus 로고
    • A Bayesian model for growth curve analysis
    • Barry D. A Bayesian model for growth curve analysis. Biometrics. 1995; 51, 639-655.
    • (1995) Biometrics , vol.51 , pp. 639-655
    • Barry, D.1
  • 21
    • 0031324103 scopus 로고    scopus 로고
    • Prediction of growth: A hierarchical Bayesian approach
    • Arjas E, Liu L, Maglaperidze N. Prediction of growth: a hierarchical Bayesian approach. Biom J. 1997; 39, 741-759.
    • (1997) Biom J , vol.39 , pp. 741-759
    • Arjas, E.1    Liu, L.2    Maglaperidze, N.3
  • 22
    • 79960110811 scopus 로고    scopus 로고
    • A constrained '1 minimization approach to sparse precision matrix estimation
    • Cai T, Liu W, Luo X. A constrained '1 minimization approach to sparse precision matrix estimation. J Amer Stat Assoc. 2011; 106, 594-607.
    • (2011) J Amer Stat Assoc , vol.106 , pp. 594-607
    • Cai, T.1    Liu, W.2    Luo, X.3
  • 23
    • 79961135005 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team. R: A Language and Environment for Statistical Computing, 2011. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/
    • (2011) R: A Language and Environment for Statistical Computing
  • 24
    • 0002975203 scopus 로고
    • On the generalized distance in statistics
    • Mahalanobis PC. On the generalized distance in statistics. Proc Nat Acad Sci India. 1936; 13, 1305-1320.
    • (1936) Proc Nat Acad Sci India , vol.13 , pp. 1305-1320
    • Mahalanobis, P.C.1
  • 26
    • 0000107573 scopus 로고
    • Descriptive statistics for multivariate distributions
    • Oja H. Descriptive statistics for multivariate distributions. Stat Probab Lett. 1983; 1, 327-332.
    • (1983) Stat Probab Lett , vol.1 , pp. 327-332
    • Oja, H.1
  • 27
    • 0001767349 scopus 로고
    • On a notion of data depth based on random simplices
    • Liu R. On a notion of data depth based on random simplices. Ann Stat. 1990; 18, 405-414.
    • (1990) Ann Stat , vol.18 , pp. 405-414
    • Liu, R.1
  • 28
    • 0242663994 scopus 로고    scopus 로고
    • Multivariate l-estimation
    • Fraiman R, Meloche J. Multivariate L-estimation. Test. 1999; 8, 255-317.
    • (1999) Test , vol.8 , pp. 255-317
    • Fraiman, R.1    Meloche, J.2
  • 29
    • 0034347419 scopus 로고    scopus 로고
    • General notions of statistical depth function
    • Zuo Y, Serfling RJ. General notions of statistical depth function. Ann Stat. 2000; 28, 461-482.
    • (2000) Ann Stat , vol.28 , pp. 461-482
    • Zuo, Y.1    Serfling, R.J.2
  • 30
    • 0040598406 scopus 로고
    • A quality index based on data depth and multivariate rank test
    • Liu R, Singh K. A quality index based on data depth and multivariate rank test. J Amer Stat Assoc. 1993; 88, 257-260.
    • (1993) J Amer Stat Assoc , vol.88 , pp. 257-260
    • Liu, R.1    Singh, K.2
  • 31
    • 21344443710 scopus 로고
    • Control charts for multivariate processes
    • Liu R. Control charts for multivariate processes. J Amer Stat Assoc. 1995; 90, 1380-1388.
    • (1995) J Amer Stat Assoc , vol.90 , pp. 1380-1388
    • Liu, R.1
  • 32
    • 0001565840 scopus 로고    scopus 로고
    • Balanced confidence sets based on Tukey depth
    • Yeh A, Singh K. Balanced confidence sets based on Tukey depth. J R Stat Soc Ser B. 1997; 3, 639-652.
    • (1997) J R Stat Soc ser B , vol.3 , pp. 639-652
    • Yeh, A.1    Singh, K.2
  • 34
    • 0033147626 scopus 로고    scopus 로고
    • Multivariate analysis by data depth: Descriptive statistics, graphics and inference
    • Liu R, Parelius JM, Singh K. Multivariate analysis by data depth: descriptive statistics, graphics and inference. Ann Stat. 1999; 27, 783-858.
    • (1999) Ann Stat , vol.27 , pp. 783-858
    • Liu, R.1    Parelius, J.M.2    Singh, K.3
  • 35
    • 33847365364 scopus 로고    scopus 로고
    • Multidimensional trimming based on projection depth
    • Zuo Y. Multidimensional trimming based on projection depth. Ann Stat. 2006; 34, 2211-2251.
    • (2006) Ann Stat , vol.34 , pp. 2211-2251
    • Zuo, Y.1
  • 38
    • 77649325713 scopus 로고    scopus 로고
    • Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth
    • Hallin M, Paindaveine D, Siman M. Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth. Ann Stat. 2010; 38, 635-669.
    • (2010) Ann Stat , vol.38 , pp. 635-669
    • Hallin, M.1    Paindaveine, D.2    Siman, M.3
  • 39
    • 84856006562 scopus 로고    scopus 로고
    • Computing multiple-output regression quantile regions
    • to appear
    • Paindaveine D, Siman M. Computing multiple-output regression quantile regions. Comput Stat Data Anal, to appear, 2011.
    • (2011) Comput Stat Data Anal
    • Paindaveine, D.1    Siman, M.2
  • 40
    • 42349097886 scopus 로고    scopus 로고
    • An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts
    • Wei Y. An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts. J Amer Stat Assoc. 2008; 103, 397-409.
    • (2008) J Amer Stat Assoc , vol.103 , pp. 397-409
    • Wei, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.