메뉴 건너뛰기




Volumn , Issue , 2012, Pages 163-170

Scalable similarity-based neighborhood methods with mapreduce

Author keywords

Mapreduce; Scalable collaborative filtering

Indexed keywords

COLLABORATIVE FILTERING; DATA SETS; MAP-REDUCE; NEIGHBORHOOD METHODS; SIMILARITY MEASURE;

EID: 84867347235     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2365952.2365984     Document Type: Conference Paper
Times cited : (39)

References (26)
  • 1
    • 12244275962 scopus 로고    scopus 로고
    • Tivo: Making show recommendations using a distributed collaborative filtering architecture
    • K. Ali and W. van Stam. Tivo: Making show recommendations using a distributed collaborative filtering architecture. KDD, 2004.
    • (2004) KDD
    • Ali, K.1    Stam, W.V.2
  • 2
  • 3
  • 5
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the netix prize challenge
    • R. M. Bell and Y. Koren. Lessons from the netix prize challenge. SIGKDD Newsl., 9:75-79, 2007.
    • (2007) SIGKDD Newsl. , vol.9 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 8
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51:107-113, 2008.
    • (2008) Commun. ACM , vol.51 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 10
    • 85055298348 scopus 로고
    • Accurate methods for the statistics of surprise and coincidence
    • T. Dunning. Accurate methods for the statistics of surprise and coincidence. ACL, 19:61-74, 1993.
    • (1993) ACL , vol.19 , pp. 61-74
    • Dunning, T.1
  • 11
    • 82555195664 scopus 로고    scopus 로고
    • Rethinking the recommender research ecosystem: Reproducibility, openness, and lenskit
    • M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T. Riedl. Rethinking the recommender research ecosystem: reproducibility, openness, and lenskit. RecSys, pp. 133-140, 2011.
    • (2011) RecSys , pp. 133-140
    • Ekstrand, M.D.1    Ludwig, M.2    Konstan, J.A.3    Riedl, J.T.4
  • 13
    • 0022821510 scopus 로고
    • An overview of the system software of a parallel relational database machine GRACE
    • S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the system software of a parallel relational database machine GRACE. VLDB, pp. 209-219, 1986.
    • (1986) VLDB , pp. 209-219
    • Fushimi, S.1    Kitsuregawa, M.2    Tanaka, H.3
  • 15
    • 80052668032 scopus 로고    scopus 로고
    • Large-scale matrix factorization with distributed stochastic gradient descent
    • R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismannis. Large-scale matrix factorization with distributed stochastic gradient descent. KDD, pp. 69-77, 2011.
    • (2011) KDD , pp. 69-77
    • Gemulla, R.1    Nijkamp, E.2    Haas, P.3    Sismannis, Y.4
  • 16
    • 70350656351 scopus 로고    scopus 로고
    • Trustwalker: A random walk model for combining trust-based and item-based recommendation
    • M. Jamali and M. Ester. Trustwalker: a random walk model for combining trust-based and item-based recommendation. KDD, pp. 397-406, 2009.
    • (2009) KDD , pp. 397-406
    • Jamali, M.1    Ester, M.2
  • 17
    • 80053404328 scopus 로고    scopus 로고
    • Scaling-up item-based collaborative filtering recommendation algorithm based on hadoop
    • J. Jiang, J. Lu, G. Zhang, and G. Long. Scaling-up item-based collaborative filtering recommendation algorithm based on hadoop. SERVICES, pp. 490 -497, 2011.
    • (2011) SERVICES , pp. 490-497
    • Jiang, J.1    Lu, J.2    Zhang, G.3    Long, G.4
  • 18
    • 77955644905 scopus 로고    scopus 로고
    • Factor in the neighbors: Scalable and accurate collaborative filtering
    • 4:1:1-1:24
    • Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. KDD, 4:1:1-1:24, 2010.
    • (2010) ACM Trans. KDD
    • Koren, Y.1
  • 19
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76-80, 2003.
    • (2003) Internet Computing, IEEE , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 21
    • 85030174634 scopus 로고
    • Grouplens: An open architecture for collaborative filtering of netnews
    • P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture for collaborative filtering of netnews. CSCW, pp. 175-186, 1994.
    • (1994) CSCW , pp. 175-186
    • Resnick, P.1    Iacovou, N.2    Suchak, M.3    Bergstrom, P.4    Riedl, J.5
  • 23
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. WWW, pp. 285-295, 2001.
    • (2001) WWW , pp. 285-295
    • Sarwar, B.1    Karypis, G.2    Konstan, J.3    Riedl, J.4
  • 25
    • 82555202311 scopus 로고    scopus 로고
    • Product recommendation and rating prediction based on multi-modal social networks
    • P. Symeonidis, E. Tiakas, and Y. Manolopoulos. Product recommendation and rating prediction based on multi-modal social networks. RecSys, pp. 61-68, 2011.
    • (2011) RecSys , pp. 61-68
    • Symeonidis, P.1    Tiakas, E.2    Manolopoulos, Y.3
  • 26
    • 48249089255 scopus 로고    scopus 로고
    • Large-scale parallel collaborative filtering for the netix prize
    • Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the netix prize. AAIM, pp. 337-348, 2008.
    • (2008) AAIM , pp. 337-348
    • Zhou, Y.1    Wilkinson, D.2    Schreiber, R.3    Pan, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.