메뉴 건너뛰기




Volumn 33, Issue 3, 2012, Pages 859-885

Interpolation-based H 2-model reduction of bilinear control systems

Author keywords

Bilinear systems; H 2 optimality; Model order reduction; Sylvester equations

Indexed keywords

BALANCED TRUNCATION; BILINEAR CONTROL SYSTEMS; BILINEAR SYSTEM; FIRST-ORDER NECESSARY CONDITIONS; ITERATIVE ALGORITHM; LYAPUNOV EQUATION; MODEL ORDER REDUCTION; MODEL REDUCTION; NUMERICAL EXAMPLE; OPTIMAL MODEL; OPTIMALITY; OPTIMALITY CONDITIONS; RATIONAL INTERPOLATION; REDUCED SYSTEMS; SYLVESTER EQUATION;

EID: 84867292802     PISSN: 08954798     EISSN: 10957162     Source Type: Journal    
DOI: 10.1137/110836742     Document Type: Article
Times cited : (149)

References (31)
  • 1
    • 0027242729 scopus 로고
    • Transient approximation of a bilinear two-area interconnected power system
    • S. Al-Baiyat, A. Farag, and M. Bettayeb, Transient approximation of a bilinear two-area interconnected power system, Electric Power Systems Research, 26 (1993), pp. 11-19.
    • (1993) Electric Power Systems Research , vol.26 , pp. 11-19
    • Al-Baiyat, S.1    Farag, A.2    Bettayeb, M.3
  • 2
    • 34047199854 scopus 로고    scopus 로고
    • Approximation of large-scale dynamical systems
    • SIAM, Philadelphia
    • A. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6, SIAM, Philadelphia, 2005.
    • (2005) Adv. Des. Control , vol.6
    • Antoulas, A.1
  • 3
    • 33646160611 scopus 로고    scopus 로고
    • A projection method for model reduction of bilinear dynamical systems
    • Z. Bai and D. Skoogh, A projection method for model reduction of bilinear dynamical systems, Linear Algebra Appl., 415 (2006), pp. 406-425.
    • (2006) Linear Algebra Appl. , vol.415 , pp. 406-425
    • Bai, Z.1    Skoogh, D.2
  • 4
    • 0036776433 scopus 로고    scopus 로고
    • Krylov subspace techniques for reduced-order modeling of nonlinear dynamical systems
    • Z. Bai, Krylov subspace techniques for reduced-order modeling of nonlinear dynamical systems, Appl. Numer. Math., 43 (2002), pp. 9-44.
    • (2002) Appl. Numer. Math. , vol.43 , pp. 9-44
    • Bai, Z.1
  • 5
    • 84976855597 scopus 로고
    • Solution of the matrix equation AX +XB = C: Algorithm 432
    • R. Bartels and G. Stewart, Solution of the matrix equation AX +XB = C: Algorithm 432, Comm. ACM, 15 (1972), pp. 820-826.
    • (1972) Comm. ACM , vol.15 , pp. 820-826
    • Bartels, R.1    Stewart, G.2
  • 6
    • 79957460056 scopus 로고    scopus 로고
    • Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems
    • P. Benner and T. Damm, Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems, SIAM J. Control Optim., 49 (2011), pp. 686-711.
    • (2011) SIAM J. Control Optim. , vol.49 , pp. 686-711
    • Benner, P.1    Damm, T.2
  • 9
    • 77955664678 scopus 로고    scopus 로고
    • Krylov subspace methods for model order reduction of bilinear control systems
    • T. Breiten and T. Damm, Krylov subspace methods for model order reduction of bilinear control systems, Systems Control Lett., 59 (2010), pp. 443-450.
    • (2010) Systems Control Lett. , vol.59 , pp. 443-450
    • Breiten, T.1    Damm, T.2
  • 10
    • 0014994537 scopus 로고
    • On the mathematical models of bilinear systems
    • C. Bruni, G. DiPillo, and G. Koch, On the mathematical models of bilinear systems, Automatica, 2 (1971), pp. 11-26.
    • (1971) Automatica , vol.2 , pp. 11-26
    • Bruni, C.1    Dipillo, G.2    Koch, G.3
  • 12
    • 70350738458 scopus 로고    scopus 로고
    • H2-norm optimal model reduction for large scale discrete dynamical MIMO systems
    • A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek, h2-norm optimal model reduction for large scale discrete dynamical MIMO systems, J. Comput. Appl. Math., 233 (2010), pp. 1202-1216.
    • (2010) J. Comput. Appl. Math. , vol.233 , pp. 1202-1216
    • Bunse-Gerstner, A.1    Kubalinska, D.2    Vossen, G.3    Wilczek, D.4
  • 13
    • 34147210549 scopus 로고    scopus 로고
    • Krylov subspaces from bilinear representations of nonlinear systems
    • M. Condon and R. Ivanov, Krylov subspaces from bilinear representations of nonlinear systems, COMPEL, 26 (2007), pp. 11-26.
    • (2007) COMPEL , vol.26 , pp. 11-26
    • Condon, M.1    Ivanov, R.2
  • 14
    • 55749085866 scopus 로고    scopus 로고
    • Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations
    • T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations, Numer. Linear Algebra Appl., 15 (2008), pp. 853-871.
    • (2008) Numer. Linear Algebra Appl. , vol.15 , pp. 853-871
    • Damm, T.1
  • 16
    • 84860382465 scopus 로고    scopus 로고
    • Convergence of the iterative rational Krylov algorithm
    • G. Flagg, C. Beattie, and S. Gugercin, Convergence of the iterative rational Krylov algorithm, Systems Control Lett., 61 (2012), pp. 688-691.
    • (2012) Systems Control Lett. , vol.61 , pp. 688-691
    • Flagg, G.1    Beattie, C.2    Gugercin, S.3
  • 17
    • 84867326487 scopus 로고    scopus 로고
    • On the optimal approximation of bilinear systems in an interpolation framework
    • Talk given at the, Vancouver, Canada
    • G. Flagg, On the optimal approximation of bilinear systems in an interpolation framework, 2011. Talk given at the ICIAM 2011, Vancouver, Canada.
    • (2011) ICIAM 2011
    • Flagg, G.1
  • 19
  • 20
    • 84867327869 scopus 로고    scopus 로고
    • Balanced model reduction of bilinear systems with applications to positive systems
    • submitted
    • C. Hartmann, A. Zueva, and B. Schäfer-Bung, Balanced model reduction of bilinear systems with applications to positive systems, SIAM J. Control Optim., submitted.
    • SIAM J. Control Optim.
    • Hartmann, C.1    Zueva, A.2    Schäfer-Bung, B.3
  • 21
  • 25
    • 0033701356 scopus 로고    scopus 로고
    • Projection frameworks for model reduction of weakly nonlinear systems
    • J. Phillips, Projection frameworks for model reduction of weakly nonlinear systems, in Proceedings of DAC 2000, 2000, pp. 184-189.
    • (2000) Proceedings of DAC 2000 , pp. 184-189
    • Phillips, J.1
  • 26
    • 0037322204 scopus 로고    scopus 로고
    • Projection-based approaches for model reduction of weakly nonlinear, time-varying systems
    • J. Phillips, Projection-based approaches for model reduction of weakly nonlinear, time-varying systems, IEEE Trans. Circuits and Systems, 22 (2003), pp. 171-187.
    • (2003) IEEE Trans. Circuits and Systems , vol.22 , pp. 171-187
    • Phillips, J.1
  • 27
    • 0003553624 scopus 로고
    • The John Hopkins University Press, Baltimore, MD
    • W. Rugh, Nonlinear System Theory, The John Hopkins University Press, Baltimore, MD, 1982.
    • (1982) Nonlinear System Theory
    • Rugh, W.1
  • 28
    • 0026305830 scopus 로고
    • Convergence of Volterra series representation and BIBO stability of bilinear systems
    • T. Siu and M. Schetzen, Convergence of Volterra series representation and BIBO stability of bilinear systems, Internat. J. Systems Sci., 22 (1991), pp. 2679-2684.
    • (1991) Internat. J. Systems Sci. , vol.22 , pp. 2679-2684
    • Siu, T.1    Schetzen, M.2
  • 29
    • 53049109854 scopus 로고    scopus 로고
    • H2-optimal model reduction of MIMO systems
    • P. Van Dooren, K. Gallivan, and P. Absil, H2-optimal model reduction of MIMO systems, Appl. Math. Lett., 21 (2008), pp. 1267-1273.
    • (2008) Appl. Math. Lett. , vol.21 , pp. 1267-1273
    • Van Dooren, P.1    Gallivan, K.2    Absil, P.3
  • 30
    • 0014923452 scopus 로고
    • Optimum solution of model-reduction problem
    • D. Wilson, Optimum solution of model-reduction problem, Proc. Inst. Elec. Eng., 117 (1970), pp. 1161-1165.
    • (1970) Proc. Inst. Elec. Eng. , vol.117 , pp. 1161-1165
    • Wilson, D.1
  • 31
    • 0036466718 scopus 로고    scopus 로고
    • On H2 model reduction of bilinear systems
    • L. Zhang and J. Lam, On H2 model reduction of bilinear systems, Automatica J. IFAC, 38 (2002), pp. 205-216.
    • (2002) Automatica J. IFAC , vol.38 , pp. 205-216
    • Zhang, L.1    Lam, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.