메뉴 건너뛰기




Volumn , Issue , 2008, Pages 894-897

A closer look on hierarchical spectro-temporal features (HIST)

Author keywords

Auditory; Non linear smoothing; Robust speech recognition; Spectro temporal

Indexed keywords

AUDITORY; AUDITORY CORTEX; DIGIT RECOGNITION; HIERARCHICAL LEVEL; LOCAL VARIATIONS; NON-LINEAR SMOOTHING; NON-NEGATIVE SPARSE CODING; PERFORMANCE ANALYSIS; RECEPTIVE FIELDS; ROBUST SPEECH RECOGNITION; SECOND LAYER; SPECTRO-TEMPORAL; SPECTROGRAMS; SPEECH FEATURES; TEMPORAL FEATURES; TIME AXIS;

EID: 84867227177     PISSN: None     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (14)
  • 2
    • 0035425442 scopus 로고    scopus 로고
    • On the role of space and time in auditory processing
    • S. Shamma, "On the role of space and time in auditory processing," Trends in Cognitive Sciences, vol. 5, no. 8, pp. 340-348, 2001.
    • (2001) Trends in Cognitive Sciences , vol.5 , Issue.8 , pp. 340-348
    • Shamma, S.1
  • 4
    • 34047272330 scopus 로고    scopus 로고
    • Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations
    • N. Mesgarani, M. Slaney, and SA Shamma, "Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations," IEEE Trans. Audio, Speech and Language Proc., vol. 14, no. 3, pp. 920-930, 2006.
    • (2006) IEEE Trans. Audio, Speech and Language Proc. , vol.14 , Issue.3 , pp. 920-930
    • Mesgarani, N.1    Slaney, M.2    Shamma, S.A.3
  • 5
    • 0038159929 scopus 로고    scopus 로고
    • Learning Optimized Features for Hierarchical Models of Invariant Object Recognition
    • H. Wersing and E. Körner, "Learning Optimized Features for Hierarchical Models of Invariant Object Recognition," Neural Computation, vol. 15, no. 7, pp. 1559-1588, 2003.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1559-1588
    • Wersing, H.1    Körner, E.2
  • 8
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative Matrix Factorization with Sparseness Constraints
    • P.O. Hoyer, "Non-negative Matrix Factorization with Sparseness Constraints," The Journal of Machine Learning Research, vol. 5, pp. 1457-1469, 2004.
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 10
    • 84987702417 scopus 로고    scopus 로고
    • The Aurora Experimental Framework for the Performance Evaluation of Speech Recognition Systems under Noisy Conditions
    • ISCA
    • D. Pearce and H.G. Hirsch, "The Aurora Experimental Framework for the Performance Evaluation of Speech Recognition Systems under Noisy Conditions," in Int. Conf. on Spoken Lang. Proc. 2000, ISCA.
    • Int. Conf. on Spoken Lang. Proc. 2000
    • Pearce, D.1    Hirsch, H.G.2
  • 11
    • 79551573428 scopus 로고    scopus 로고
    • Tech. Rep., Niederrhein University of Applied Sciences
    • G. Hirsch, "FaNTFiltering and Noise Adding Tool," Tech. Rep., Niederrhein University of Applied Sciences, http://dnt.-kr.hsnr.de/download. html.
    • FaNTFiltering and Noise Adding Tool
    • Hirsch, G.1
  • 12
    • 0027623210 scopus 로고
    • Assessment for automatic speech recognition II: NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems
    • A. Varga and H.J.M. Steeneken, "Assessment for automatic speech recognition II: NOISEX-92: a database and an experiment to study the effect of additive noise on speech recognition systems," Speech Communication, vol. 12, no. 3, pp. 247-251, 1993.
    • (1993) Speech Communication , vol.12 , Issue.3 , pp. 247-251
    • Varga, A.1    Steeneken, H.J.M.2
  • 14
    • 85009265586 scopus 로고    scopus 로고
    • Frontend Post-Processing and Backend Model Enhancement on the Aurora 2.0/3.0 Databases
    • ISCA
    • C.P. Chen, K. Filali, and J.A. Bilmes, "Frontend Post-Processing and Backend Model Enhancement on the Aurora 2.0/3.0 Databases," in Int. Conf. on Spoken Lang. Proc. 2002, ISCA.
    • Int. Conf. on Spoken Lang. Proc. 2002
    • Chen, C.P.1    Filali, K.2    Bilmes, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.