-
1
-
-
84867123077
-
-
(extended version). Technical Report 7965, INRIA, May
-
Araya-López, M., Thomas, V., and Buffet, O. Near-optimal BRL using optimistic local transitions (extended version). Technical Report 7965, INRIA, May 2012.
-
(2012)
Near-optimal BRL Using Optimistic Local Transitions
-
-
Araya-López, M.1
Thomas, V.2
Buffet, O.3
-
2
-
-
78649507911
-
A Bayesian sampling approach to exploration in reinforcement learning
-
Asmuth, J., Li, L., Littman, M.L., Nouri, A., and Wingate, D. A Bayesian sampling approach to exploration in reinforcement learning. In Proc. of UAI, 2009.
-
Proc. of UAI, 2009
-
-
Asmuth, J.1
Li, L.2
Littman, M.L.3
Nouri, A.4
Wingate, D.5
-
3
-
-
0041965975
-
R-max - A general polynomial time algorithm for near-optimal reinforcement learning
-
Brafman, R.I. and Tennenholtz, M. R-max - a general polynomial time algorithm for near-optimal reinforcement learning. JMLR, 3:213-231, 2003.
-
(2003)
JMLR
, vol.3
, pp. 213-231
-
-
Brafman, R.I.1
Tennenholtz, M.2
-
5
-
-
0012257655
-
Near-optimal reinforcement learning in polynomial time
-
Kearns, M. and Singh, S. Near-optimal reinforcement learning in polynomial time. In Machine Learning, pp. 260-268, 1998.
-
(1998)
Machine Learning
, pp. 260-268
-
-
Kearns, M.1
Singh, S.2
-
6
-
-
71149109483
-
Near-Bayesian exploration in polynomial time
-
Kolter, J. and Ng, A. Near-Bayesian exploration in polynomial time. In Proc. of ICML, 2009.
-
Proc. of ICML, 2009
-
-
Kolter, J.1
Ng, A.2
-
7
-
-
33749251297
-
An analytic solution to discrete Bayesian reinforcement learning
-
Poupart, P., Vlassis, N., Hoey, J., and Regan, K. An analytic solution to discrete Bayesian reinforcement learning. In Proc. of ICML, 2006.
-
Proc. of ICML, 2006
-
-
Poupart, P.1
Vlassis, N.2
Hoey, J.3
Regan, K.4
-
9
-
-
80053165997
-
Variance-based rewards for approximate Bayesian reinforcement learning
-
Sorg, J., Singh, S., and Lewis, R. Variance-based rewards for approximate Bayesian reinforcement learning. In Proc. of UAI, 2010.
-
Proc. of UAI, 2010
-
-
Sorg, J.1
Singh, S.2
Lewis, R.3
-
10
-
-
73549084301
-
Reinforcement learning in finite MDPs: PAC analysis
-
December
-
Strehl, A.L., Li, L., and Littman, M.L. Reinforcement learning in finite MDPs: PAC analysis. JMLR, 10: 2413-2444, December 2009.
-
(2009)
JMLR
, vol.10
, pp. 2413-2444
-
-
Strehl, A.L.1
Li, L.2
Littman, M.L.3
-
11
-
-
14344258433
-
A Bayesian framework for rein- Forcement learning
-
Strens, Malcolm J. A. A Bayesian framework for rein- forcement learning. In Proc. of ICML, 2000.
-
Proc. of ICML, 2000
-
-
Strens, M.J.A.1
-
13
-
-
77956520676
-
Model-based reinforcement learning with nearly tight exploration complexity bounds
-
Szita, Istvn and Szepesvri, Csaba. Model-based reinforcement learning with nearly tight exploration complexity bounds. In Proc. of ICML, 2010.
-
Proc. of ICML, 2010
-
-
Szita, I.1
Szepesvri, C.2
-
15
-
-
79958846996
-
Exploring compact reinforcement-learning representations with linear regression
-
Walsh, T.J., Szita, I., Diuk, C., and Littman, M.L. Exploring compact reinforcement-learning representations with linear regression. In Proc. of UAI, 2009.
-
Proc. of UAI, 2009
-
-
Walsh, T.J.1
Szita, I.2
Diuk, C.3
Littman, M.L.4
|