메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 33-40

Stochastic smoothing for nonsmooth minimizations: Accelerating SGD by exploiting structure

Author keywords

[No Author keywords available]

Indexed keywords

CENTRAL PROBLEMS; EMPIRICAL COMPARISON; FAST RATE; LOSS FUNCTIONS; NON-SMOOTH; NOVEL ALGORITHM; OPTIMAL CONVERGENCE; STOCHASTIC ALGORITHMS; STOCHASTIC GRADIENT DESCENT; SUBGRADIENT DESCENT;

EID: 84867137256     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (31)
  • 2
    • 85162480829 scopus 로고    scopus 로고
    • Non-asymptotic analysis of stochastic approximation algorithms for machine learning
    • Bach, Francis and Moulines, Eric. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In NIPS, 2011.
    • (2011) NIPS
    • Bach, F.1    Moulines, E.2
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, Amir and Teboulle, Marc. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):193-202, 2009.
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 193-202
    • Beck, A.1    Teboulle, M.2
  • 5
    • 84924053271 scopus 로고    scopus 로고
    • Theory of classification: A survey of some recent advances
    • Boucheron, Stéphane, Bousquet, Olivier, and Lugosi, Gábor. Theory of classification: A survey of some recent advances. ESAIM: Probability and Statistics, 9:323-375, 2005.
    • (2005) ESAIM: Probability and Statistics , vol.9 , pp. 323-375
    • Boucheron, S.1    Bousquet, O.2    Lugosi, G.3
  • 6
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies, I., Defrise, M., and Mol, C. De. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11):14131457, 2004.
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 14131457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 8
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • Duchi, John and Singer, Yoram. Efficient online and batch learning using forward backward splitting. JMLR, (10): 2899-2934, 2009.
    • (2009) JMLR , Issue.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 11
    • 84875000998 scopus 로고    scopus 로고
    • Beyond the regret minimization barrier: An optimal algorithm for stochastic strongly-convex optimization
    • Hazan, Elad and Kale, Satyen. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In COLT, 2011.
    • (2011) COLT
    • Hazan, E.1    Kale, S.2
  • 12
    • 77956508892 scopus 로고    scopus 로고
    • Accelerated gradient methods for stochastic optimization and online learning
    • Hu, Chonghai, Kwok, James T., and Pan, Weike. Accelerated gradient methods for stochastic optimization and online learning. In NIPS 22, 2009.
    • (2009) NIPS 22
    • Hu, C.1    Kwok, J.T.2    Pan, W.3
  • 13
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber, Peter J. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1):73-101, 1964.
    • (1964) Annals of Mathematical Statistics , vol.35 , Issue.1 , pp. 73-101
    • Huber, P.J.1
  • 14
    • 84867133375 scopus 로고    scopus 로고
    • Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, i: A generic algorithmic framework
    • Lan, G. and Ghadimi, S. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, i: a generic algorithmic framework. SIAM J. on Optimization, 2011.
    • (2011) SIAM J. on Optimization
    • Lan, G.1    Ghadimi, S.2
  • 15
    • 84862273593 scopus 로고    scopus 로고
    • An optimal method for stochastic composite optimization
    • doi: DOI10.1007/s10107-010-0434-y
    • Lan, Guanghui. An optimal method for stochastic composite optimization. Mathematical Programming, 2010. doi: DOI10.1007/s10107-010-0434-y.
    • (2010) Mathematical Programming
    • Lan, G.1
  • 16
    • 0000345334 scopus 로고
    • Splitting algorithms for the sum of two nonlinear operators
    • Lions, P. L. and Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. on Numerical Analysis, 16(6):964-979, 1979.
    • (1979) SIAM J. on Numerical Analysis , vol.16 , Issue.6 , pp. 964-979
    • Lions, P.L.1    Mercier, B.2
  • 18
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust stochastic approximation approach to stochastic programming. SIAM J. on Optimization, 19(4):1574-1609, 2009.
    • (2009) SIAM J. on Optimization , vol.19 , Issue.4 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 20
    • 33144470576 scopus 로고    scopus 로고
    • Excessive gap technique in nonsmooth convex minimization
    • Nesterov, Yurii. Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim., 16(1):235-249, 2005a.
    • (2005) SIAM J. Optim. , vol.16 , Issue.1 , pp. 235-249
    • Nesterov, Y.1
  • 21
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Nesterov, Yurii. Smooth minimization of non-smooth functions. Math. Program., Ser. A, 103:127-152, 2005b.
    • (2005) Math. Program., Ser. A , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 23
    • 33947732413 scopus 로고    scopus 로고
    • Smoothing technique and its applications in semidefinite optimization
    • Nesterov, Yurii. Smoothing technique and its applications in semidefinite optimization. Mathematical Programming, 110(2):245-259, 2007b.
    • (2007) Mathematical Programming , vol.110 , Issue.2 , pp. 245-259
    • Nesterov, Y.1
  • 24
    • 0026899240 scopus 로고
    • Acceleration of stochastic approximation by averaging
    • Polyak, Boris T. and Juditsky, Anatoli B. Acceleration of stochastic approximation by averaging. SIAM J. on Control and Optimization, 30(4):838-855, 1992.
    • (1992) SIAM J. on Control and Optimization , vol.30 , Issue.4 , pp. 838-855
    • Polyak, B.T.1    Juditsky, A.B.2
  • 26
    • 48849117633 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • Shalev-Shwartz, Shai, Singer, Yoram, and Srebro, Nathan. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, 2007.
    • (2007) ICML
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 28
    • 84867126795 scopus 로고    scopus 로고
    • Making gradient descent optimal for strongly convex stochastic optimization
    • Shamir, Ohad. Making gradient descent optimal for strongly convex stochastic optimization. In OPT 2011, 2011. URL http://arxiv.org/abs/1109.5647.
    • (2011) OPT 2011
    • Shamir, O.1
  • 30
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging methods for regularized stochastic learning and online optimization
    • Xiao, Lin. Dual averaging methods for regularized stochastic learning and online optimization. JMLR, 11:2543-2596, 2010.
    • (2010) JMLR , vol.11 , pp. 2543-2596
    • Xiao, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.