-
2
-
-
8844277626
-
Analyzing time series gene expression data
-
Oxford University Press
-
Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics, Oxford University Press, 20:2493-2503, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2493-2503
-
-
Bar-Joseph, Z.1
-
3
-
-
84867121459
-
Learning networks of stochastic equations
-
Bento, J., Ibrahimi, M., and Montanari, A. Learning networks of stochastic equations. In NIPS, 2010.
-
(2010)
NIPS
-
-
Bento, J.1
Ibrahimi, M.2
Montanari, A.3
-
5
-
-
0004311217
-
-
John Wiley & Sons, Inc.
-
Box, G.E.P., Jenkins, G.M., and Reinsel, G.C. Time-series Analysis: Forecasting and Control. John Wiley & Sons, Inc., 1990.
-
(1990)
Time-series Analysis: Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
Reinsel, G.C.3
-
6
-
-
77952741387
-
Matrix completion with noise
-
Candes, E. J. and Plan, Y. Matrix completion with noise. In IEEE Proceedings, volume 98, pp. 925-936, 2010.
-
(2010)
IEEE Proceedings
, vol.98
, pp. 925-936
-
-
Candes, E.J.1
Plan, Y.2
-
7
-
-
77954209955
-
-
Available at arXiv.0912.3599
-
Candes, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? In Available at arXiv.0912.3599, 2009.
-
(2009)
Robust Principal Component Analysis?
-
-
Candes, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
9
-
-
79960591511
-
Rank-sparsity incoherence for matrix decomposition
-
Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 2011.
-
(2011)
SIAM Journal on Optimization
-
-
Chandrasekaran, V.1
Sanghavi, S.2
Parrilo, P.A.3
Willsky, A.S.4
-
11
-
-
80054804733
-
Low-rank matrix recovery from errors and erasures
-
Chen, Y., Jalali, A., Sanghavi, S., and Caramanis, C. Low-rank matrix recovery from errors and erasures. In ISIT, 2011.
-
(2011)
ISIT
-
-
Chen, Y.1
Jalali, A.2
Sanghavi, S.3
Caramanis, C.4
-
14
-
-
0002629270
-
Maximum-likelihood from incomplete datavia the em algorithm
-
Dempster, A.P., Laird, N.M., and Rubin, D.B. Maximum-likelihood from incomplete datavia the em algorithm. Journal of Royal Statistics Society, Series B., 39, 1977.
-
(1977)
Journal of Royal Statistics Society, Series B
, vol.39
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
15
-
-
84874269327
-
-
Available at
-
Fazel, M., Pong, T.K., Sun, D., and Tseng, P. Hankel matrix rank minimization with applications in system identification and realization. In Available at http://faculty.washington.edu/mfazel/Hankelrm9.pdf, 2011.
-
(2011)
Hankel Matrix Rank Minimization with Applications in System Identification and Realization
-
-
Fazel, M.1
Pong, T.K.2
Sun, D.3
Tseng, P.4
-
16
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman, J., Hastie, T., and Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. BioStatistics, 9:432-441, 2007.
-
(2007)
BioStatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
19
-
-
33745944718
-
Sparse image coding using a 3d non-negative tensor factorization
-
Hazan, T., Polak, S., and Shashua, A. Sparse image coding using a 3d non-negative tensor factorization. In ICCV, 2005.
-
(2005)
ICCV
-
-
Hazan, T.1
Polak, S.2
Shashua, A.3
-
20
-
-
44949114109
-
Modeling and simulating chemical reactions
-
Higham, D. Modeling and simulating chemical reactions. SIAM Review, 50:347-368, 2008.
-
(2008)
SIAM Review
, vol.50
, pp. 347-368
-
-
Higham, D.1
-
23
-
-
80053437868
-
Clustering partially observed graphs via convex optimization
-
Jalali, A., Chen, Y., Sanghavi, S., and Xu, H. Clustering partially observed graphs via convex optimization. In ICML, 2011.
-
(2011)
ICML
-
-
Jalali, A.1
Chen, Y.2
Sanghavi, S.3
Xu, H.4
-
24
-
-
0242351905
-
Financial time series forecasting using support vector machines
-
Kim, K. Financial time series forecasting using support vector machines. Elsevier Neurocomputing, 55:307-319, 2003.
-
(2003)
Elsevier Neurocomputing
, vol.55
, pp. 307-319
-
-
Kim, K.1
-
25
-
-
0034287154
-
Adaptive estimation of a quadratic functional by model selection
-
Laurent, B. and Massart, P. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, 28:1303-1338, 1998.
-
(1998)
Annals of Statistics
, vol.28
, pp. 1303-1338
-
-
Laurent, B.1
Massart, P.2
-
26
-
-
77952389364
-
-
MIT Press
-
Lawrence, N. D., Girolami, M., Rattray, M., and Sanguinetti, G. Learning and Inference in Computational Systems Biology. MIT Press, 2010.
-
(2010)
Learning and Inference in Computational Systems Biology
-
-
Lawrence, N.D.1
Girolami, M.2
Rattray, M.3
Sanguinetti, G.4
-
27
-
-
77951134100
-
Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix
-
Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., and Ma, Y. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. In UIUC Technical Report UILU-ENG-09-2214, 2009.
-
(2009)
UIUC Technical Report UILU-ENG-09-2214
-
-
Lin, Z.1
Ganesh, A.2
Wright, J.3
Wu, L.4
Chen, M.5
Ma, Y.6
-
29
-
-
0036236957
-
Prediction error estimation methods
-
Ljung, L. Prediction error estimation methods. Circuits, systems, and signal processing, 21(1):11-21, 2002.
-
(2002)
Circuits, Systems, and Signal Processing
, vol.21
, Issue.1
, pp. 11-21
-
-
Ljung, L.1
-
30
-
-
0003653587
-
-
L. Erlbaum Associates Inc. Hillsdale, NJ, USA
-
Loehlin, J.C. Latent Variable Models: An introduction to-factor, path, and structural analysis. L. Erlbaum Associates Inc. Hillsdale, NJ, USA, 1984.
-
(1984)
Latent Variable Models: An Introduction To-factor, Path, and Structural Analysis
-
-
Loehlin, J.C.1
-
32
-
-
77956501314
-
Learning the linear dynamical system with asos
-
Martens, J. Learning the linear dynamical system with asos. In ICML, 2010.
-
(2010)
ICML
-
-
Martens, J.1
-
33
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
Meinshausen, N. and Buhlmann, P. High-dimensional graphs and variable selection with the lasso. Annals of Statistics, 34(3):1436-1462, 2006.
-
(2006)
Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
36
-
-
0021404166
-
Mixture densities, maximum likelihood and the em algorithm
-
Redner, R. and Walker, H. Mixture densities, maximum likelihood and the em algorithm. SIAM Review, 26, 1984.
-
(1984)
SIAM Review
, vol.26
-
-
Redner, R.1
Walker, H.2
-
38
-
-
1942516801
-
Weighted low rank approximation
-
Srebro, N. and Jaakkola, T. Weighted low rank approximation. In ICML, 2003.
-
(2003)
ICML
-
-
Srebro, N.1
Jaakkola, T.2
-
41
-
-
0027589792
-
Subspace algorithms for the stochastic identification problem
-
Van Overschee, P. and De Moor, B. Subspace algorithms for the stochastic identification problem. Automatica, 29 (3):649-660, 1993.
-
(1993)
Automatica
, vol.29
, Issue.3
, pp. 649-660
-
-
Van Overschee, P.1
De Moor, B.2
-
44
-
-
0242295767
-
Bayesian factor regression models in the "large p, small n" paradigm
-
Oxford University Press
-
West, Mike. Bayesian factor regression models in the "large p, small n" paradigm. In Bayesian Statistics, pp. 723-732. Oxford University Press, 2003.
-
(2003)
Bayesian Statistics
, pp. 723-732
-
-
West, M.1
-
46
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
Yuan, M. and Lin, Y. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19-35, 2007.
-
(2007)
Biometrika
, vol.94
, Issue.1
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
-
47
-
-
77955670622
-
Stable principal component pursuit
-
Zhou, Z., Li, X., Wright, J., Candes, E., and Ma, Y. Stable principal component pursuit. In ISIT, 2010.
-
(2010)
ISIT
-
-
Zhou, Z.1
Li, X.2
Wright, J.3
Candes, E.4
Ma, Y.5
|