메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 473-480

Learning the dependence graph of time series with latent factors

Author keywords

[No Author keywords available]

Indexed keywords

DEPENDENCE GRAPHS; DEPENDENCY STRUCTURES; HIGH-DIMENSIONAL; LATENT FACTOR; LATENT VARIABLE; LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS; OPTIMIZATION BASED METHODS; SPURIOUS INTERACTIONS; STOCK MARKET; STRUCTURE RECOVERY; SYNTHETIC AND REAL DATA; THEORETICAL RESULT; TIME EVOLUTIONS;

EID: 84867130883     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (34)

References (47)
  • 2
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • Oxford University Press
    • Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics, Oxford University Press, 20:2493-2503, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 3
    • 84867121459 scopus 로고    scopus 로고
    • Learning networks of stochastic equations
    • Bento, J., Ibrahimi, M., and Montanari, A. Learning networks of stochastic equations. In NIPS, 2010.
    • (2010) NIPS
    • Bento, J.1    Ibrahimi, M.2    Montanari, A.3
  • 6
    • 77952741387 scopus 로고    scopus 로고
    • Matrix completion with noise
    • Candes, E. J. and Plan, Y. Matrix completion with noise. In IEEE Proceedings, volume 98, pp. 925-936, 2010.
    • (2010) IEEE Proceedings , vol.98 , pp. 925-936
    • Candes, E.J.1    Plan, Y.2
  • 11
    • 80054804733 scopus 로고    scopus 로고
    • Low-rank matrix recovery from errors and erasures
    • Chen, Y., Jalali, A., Sanghavi, S., and Caramanis, C. Low-rank matrix recovery from errors and erasures. In ISIT, 2011.
    • (2011) ISIT
    • Chen, Y.1    Jalali, A.2    Sanghavi, S.3    Caramanis, C.4
  • 16
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T., and Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. BioStatistics, 9:432-441, 2007.
    • (2007) BioStatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 33745944718 scopus 로고    scopus 로고
    • Sparse image coding using a 3d non-negative tensor factorization
    • Hazan, T., Polak, S., and Shashua, A. Sparse image coding using a 3d non-negative tensor factorization. In ICCV, 2005.
    • (2005) ICCV
    • Hazan, T.1    Polak, S.2    Shashua, A.3
  • 20
    • 44949114109 scopus 로고    scopus 로고
    • Modeling and simulating chemical reactions
    • Higham, D. Modeling and simulating chemical reactions. SIAM Review, 50:347-368, 2008.
    • (2008) SIAM Review , vol.50 , pp. 347-368
    • Higham, D.1
  • 23
    • 80053437868 scopus 로고    scopus 로고
    • Clustering partially observed graphs via convex optimization
    • Jalali, A., Chen, Y., Sanghavi, S., and Xu, H. Clustering partially observed graphs via convex optimization. In ICML, 2011.
    • (2011) ICML
    • Jalali, A.1    Chen, Y.2    Sanghavi, S.3    Xu, H.4
  • 24
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim, K. Financial time series forecasting using support vector machines. Elsevier Neurocomputing, 55:307-319, 2003.
    • (2003) Elsevier Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.1
  • 25
    • 0034287154 scopus 로고    scopus 로고
    • Adaptive estimation of a quadratic functional by model selection
    • Laurent, B. and Massart, P. Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, 28:1303-1338, 1998.
    • (1998) Annals of Statistics , vol.28 , pp. 1303-1338
    • Laurent, B.1    Massart, P.2
  • 32
    • 77956501314 scopus 로고    scopus 로고
    • Learning the linear dynamical system with asos
    • Martens, J. Learning the linear dynamical system with asos. In ICML, 2010.
    • (2010) ICML
    • Martens, J.1
  • 33
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N. and Buhlmann, P. High-dimensional graphs and variable selection with the lasso. Annals of Statistics, 34(3):1436-1462, 2006.
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 36
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • Redner, R. and Walker, H. Mixture densities, maximum likelihood and the em algorithm. SIAM Review, 26, 1984.
    • (1984) SIAM Review , vol.26
    • Redner, R.1    Walker, H.2
  • 38
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low rank approximation
    • Srebro, N. and Jaakkola, T. Weighted low rank approximation. In ICML, 2003.
    • (2003) ICML
    • Srebro, N.1    Jaakkola, T.2
  • 41
    • 0027589792 scopus 로고
    • Subspace algorithms for the stochastic identification problem
    • Van Overschee, P. and De Moor, B. Subspace algorithms for the stochastic identification problem. Automatica, 29 (3):649-660, 1993.
    • (1993) Automatica , vol.29 , Issue.3 , pp. 649-660
    • Van Overschee, P.1    De Moor, B.2
  • 44
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • Oxford University Press
    • West, Mike. Bayesian factor regression models in the "large p, small n" paradigm. In Bayesian Statistics, pp. 723-732. Oxford University Press, 2003.
    • (2003) Bayesian Statistics , pp. 723-732
    • West, M.1
  • 46
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan, M. and Lin, Y. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19-35, 2007.
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.