메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1279-1286

A convex relaxation for weakly supervised classifiers

Author keywords

[No Author keywords available]

Indexed keywords

CONVEX RELAXATION; DATA SETS; EXPECTATION MAXIMIZATION; LOCAL MINIMUMS; MULTI-CLASS; MULTIPLE INSTANCE LEARNING; SEMI-SUPERVISED LEARNING; SEMIDEFINITE PROGRAMS; SUPERVISED CLASSIFICATION; SUPERVISED CLASSIFIERS;

EID: 84867127869     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (32)

References (44)
  • 1
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • Andrews, S., Tsochantaridis, I., and Hofmann, T. Support vector machines for multiple-instance learning. In NIPS, 2003.
    • (2003) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 2
    • 84859767140 scopus 로고    scopus 로고
    • A boosting approach to multiple instance learning
    • Auer, P. and Ortner, R. A boosting approach to multiple instance learning. In ECML, 2004.
    • (2004) ECML
    • Auer, P.1    Ortner, R.2
  • 3
    • 70450188146 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • Babenko, B., Yang, M-H., and Belongie, S. Visual tracking with online multiple instance learning. In CVPR, 2009.
    • (2009) CVPR
    • Babenko, B.1    Yang, M.-H.2    Belongie, S.3
  • 4
    • 84900675076 scopus 로고    scopus 로고
    • Diffrac: A discriminative and flexible framework for clustering
    • Bach, F. and Harchaoui, Z. Diffrac : a discriminative and flexible framework for clustering. In NIPS, 2007.
    • (2007) NIPS
    • Bach, F.1    Harchaoui, Z.2
  • 6
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 7
    • 31844443290 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • Belkin, M., Matveeva, I., and Niyogi, P. Regularization and semi-supervised learning on large graphs. In COLT, 2004.
    • (2004) COLT
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 8
    • 0000127135 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • Bennett, K. and Demiriz, A. Semi-supervised support vector machines. In NIPS, 1998.
    • (1998) NIPS
    • Bennett, K.1    Demiriz, A.2
  • 10
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Blum, A. and Mitchell, T. Combining labeled and unlabeled data with co-training. In COLT, 1998.
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 12
    • 1542337156 scopus 로고    scopus 로고
    • A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization
    • Burer, S. and Monteiro, R. D. C. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Mathematical Programming, 2003.
    • (2003) Mathematical Programming
    • Burer, S.1    Monteiro, R.D.C.2
  • 14
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Chen, Y. and Wang, James Z. Image categorization by learning and reasoning with regions. JMLR, 2004.
    • (2004) JMLR
    • Chen, Y.1    Wang, J.Z.2
  • 15
    • 70450175499 scopus 로고    scopus 로고
    • Learning from ambiguously labeled images
    • Cour, T., Sapp, Ben, Jordan, Chris, and Taskar, Ben. Learning from ambiguously labeled images. In CVPR, 2009.
    • (2009) CVPR
    • Cour, T.1    Sapp, B.2    Jordan, C.3    Taskar, B.4
  • 16
    • 33749243962 scopus 로고    scopus 로고
    • Discriminative cluster analysis
    • De la Torre, F. and Takeo, K. Discriminative cluster analysis. In ICML, 2006.
    • (2006) ICML
    • De La Torre, F.1    Takeo, K.2
  • 17
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multipleinstance problem with axis-parallel rectangles
    • Dietterich, T. G. and Lathrop, R. H. Solving the multipleinstance problem with axis-parallel rectangles. Artificial Intelligence, 89:31-71, 1997.
    • (1997) Artificial Intelligence , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2
  • 18
    • 0001489493 scopus 로고
    • An iterative procedure for estimation in contingency tables
    • Fienberg, S.E. An iterative procedure for estimation in contingency tables. The Annals of Mathematical Statistics, pp. 907-917, 1970.
    • (1970) The Annals of Mathematical Statistics , pp. 907-917
    • Fienberg, S.E.1
  • 20
    • 58049100940 scopus 로고    scopus 로고
    • Deterministic annealing for multiple-instance learning
    • Gehler, P. V. and Chapelle, O. Deterministic annealing for multiple-instance learning. In AISTATS, 2007.
    • (2007) AISTATS
    • Gehler, P.V.1    Chapelle, O.2
  • 21
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
    • Goemans, M. X. and Williamson, D.P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115-1145, 1995.
    • (1995) Journal of the ACM , vol.42 , pp. 1115-1145
    • Goemans, M.X.1    Williamson, D.P.2
  • 22
    • 85162026055 scopus 로고    scopus 로고
    • Convex relaxations of latent variable training
    • Guo, Y. and Schuurmans, D. Convex relaxations of latent variable training. In NIPS, 2008.
    • (2008) NIPS
    • Guo, Y.1    Schuurmans, D.2
  • 24
    • 70450118721 scopus 로고    scopus 로고
    • Learning from ambiguously labeled examples
    • Hullermeier, E. and Beringer, J. Learning from ambiguously labeled examples. In IDA, 2006.
    • (2006) IDA
    • Hullermeier, E.1    Beringer, J.2
  • 25
    • 84899032037 scopus 로고    scopus 로고
    • Learning with multiple labels
    • Jin, R. and Ghahramani, Z. Learning with multiple labels. In NIPS, 2003.
    • (2003) NIPS
    • Jin, R.1    Ghahramani, Z.2
  • 27
    • 85162063413 scopus 로고    scopus 로고
    • Efficient optimization for discriminative latent class models
    • Joulin, A., Bach, F., and Ponce, J. Efficient optimization for discriminative latent class models. In NIPS, 2010.
    • (2010) NIPS
    • Joulin, A.1    Bach, F.2    Ponce, J.3
  • 28
    • 77956086700 scopus 로고    scopus 로고
    • Low-rank optimization on the cone of positive semidefinite matrices
    • Journée, M., Bach, F., Absil, P.-A., and Sepulchre, R. Low-rank optimization on the cone of positive semidefinite matrices. SIAM Journal on Optimization, 20(5):2327-2351, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.5 , pp. 2327-2351
    • Journée, M.1    Bach, F.2    Absil, P.-A.3    Sepulchre, R.4
  • 29
    • 84880884345 scopus 로고    scopus 로고
    • Marginalized multi-instance kernels
    • Kwok, J. T. and Cheung, P. Marginalized multi-instance kernels. In IJCAI, 2007.
    • (2007) IJCAI
    • Kwok, J.T.1    Cheung, P.2
  • 30
    • 76749107542 scopus 로고    scopus 로고
    • Online learn-ing for matrix factorization and sparse coding
    • Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online learn-ing for matrix factorization and sparse coding. JMLR, 2010.
    • (2010) JMLR
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 31
    • 0002288190 scopus 로고    scopus 로고
    • L. Multiple-instance learning for natural scene classification
    • Maron, O. and Ratan, A. L. Multiple-instance learning for natural scene classification. In ICML, 1998.
    • (1998) ICML
    • Maron, O.1    Ratan, A.2
  • 32
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • Ng, A. Y., Jordan, M. I., and Weiss, Y. On spectral clustering: Analysis and an algorithm. In NIPS, 2001.
    • (2001) NIPS
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 33
    • 31844448950 scopus 로고    scopus 로고
    • Supervised Versus Multiple Instance Learning: An Empirical Comparison
    • Ray, S. and Craven, M. Supervised Versus Multiple Instance Learning: An Empirical Comparison. In ICML, 2005.
    • (2005) ICML
    • Ray, S.1    Craven, M.2
  • 34
    • 45549083257 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • Viola, P., Piatt, John C., and Zhang, C. Multiple instance boosting for object detection. In NIPS, 2006.
    • (2006) NIPS
    • Viola, P.1    Piatt, J.C.2    Zhang, C.3
  • 35
    • 56449086489 scopus 로고    scopus 로고
    • Adaptive p-posterior mixture-model kernels for multiple instance learning
    • Wang, H.-Y., Yang, Q., and Zha, H. Adaptive p-posterior mixture-model kernels for multiple instance learning. In ICML, 2008.
    • (2008) ICML
    • Wang, H.-Y.1    Yang, Q.2    Zha, H.3
  • 36
    • 0141596676 scopus 로고    scopus 로고
    • Solving multiple-instance problem: A lazy learning approach
    • Wang, J. and Zucker, J. Solving multiple-instance problem: A lazy learning approach. In ICML, 2000.
    • (2000) ICML
    • Wang, J.1    Zucker, J.2
  • 37
    • 56449089515 scopus 로고    scopus 로고
    • Unsupervised and semisupervised multi-class support vector machines
    • Xu, L. and Schuurmans, D. Unsupervised and semisupervised multi-class support vector machines. In AAAI, 2005.
    • (2005) AAAI
    • Xu, L.1    Schuurmans, D.2
  • 39
    • 31844447172 scopus 로고    scopus 로고
    • Logistic regression and boosting for labeled bags of instances
    • Xu, X. and Frank, E. Logistic regression and boosting for labeled bags of instances. In KDDM, 2004.
    • (2004) KDDM
    • Xu, X.1    Frank, E.2
  • 40
    • 0033884407 scopus 로고    scopus 로고
    • Image database retrieval with multiple-instance learning techniques
    • Yang, C. Image database retrieval with multiple-instance learning techniques. In ICDE, 2000.
    • (2000) ICDE
    • Yang, C.1
  • 41
    • 31444436020 scopus 로고    scopus 로고
    • Adapting rbf neural networks to multi-instance learning
    • Zhang, M. and Zhou, Z. Adapting rbf neural networks to multi-instance learning. Neural Processing Letters, 23 (1):1-26, 2006.
    • (2006) Neural Processing Letters , vol.23 , Issue.1 , pp. 1-26
    • Zhang, M.1    Zhou, Z.2
  • 42
    • 0012349465 scopus 로고    scopus 로고
    • Em-dd: An improved multiple-instance learning technique
    • Zhang, Q. and Goldman, S. A. Em-dd: An improved multiple-instance learning technique. In NIPS, 2001.
    • (2001) NIPS
    • Zhang, Q.1    Goldman, S.A.2
  • 43
    • 56449113208 scopus 로고    scopus 로고
    • On the relation between multi-instance learning and semi-supervised learning
    • Zhou, Z. and Xu, J. On the relation between multi-instance learning and semi-supervised learning. In ICML, 2007.
    • (2007) ICML
    • Zhou, Z.1    Xu, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.