메뉴 건너뛰기




Volumn 39, Issue 9, 2012, Pages 1444-1448

Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance

Author keywords

Heat load; Heat pipe; Nanofluid; Thermal performance

Indexed keywords

ALUMINUM OXIDES; CONCENTRATION LEVELS; COPPER TUBES; EXPERIMENTAL INVESTIGATIONS; NANOFLUIDS; OPERATING STATE; PURE WATER; THERMAL EFFICIENCY; THERMAL EFFICIENCY ENHANCEMENT; THERMAL PERFORMANCE; WALL TEMPERATURES;

EID: 84866922820     PISSN: 07351933     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.icheatmasstransfer.2012.07.024     Document Type: Article
Times cited : (98)

References (20)
  • 1
    • 78751704721 scopus 로고    scopus 로고
    • Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids
    • Huminic G., Huminic A. Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids. Experimental Thermal and Fluid Science 2011, 35:550-557.
    • (2011) Experimental Thermal and Fluid Science , vol.35 , pp. 550-557
    • Huminic, G.1    Huminic, A.2
  • 4
    • 80053560057 scopus 로고    scopus 로고
    • Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics
    • Moraveji M.K., Darabi M., Haddad S.M.H., Davarnejad R. Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics. International Communications in Heat and Mass Transfer 2011, 38:1291-1295.
    • (2011) International Communications in Heat and Mass Transfer , vol.38 , pp. 1291-1295
    • Moraveji, M.K.1    Darabi, M.2    Haddad, S.M.H.3    Davarnejad, R.4
  • 5
    • 84863830320 scopus 로고    scopus 로고
    • Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics
    • Moraveji M.K., Darabi M., Haddad S.M.H., Davarnejad R. Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics. International Communications in Heat and Mass Transfer 2012, 39:995-999.
    • (2012) International Communications in Heat and Mass Transfer , vol.39 , pp. 995-999
    • Moraveji, M.K.1    Darabi, M.2    Haddad, S.M.H.3    Davarnejad, R.4
  • 6
    • 0029427666 scopus 로고
    • Enhancing thermal conductivity of fluids with nano-particles
    • (FED)
    • Choi S.U.S. Enhancing thermal conductivity of fluids with nano-particles. ASME 1995, 231. (FED).
    • (1995) ASME , vol.231
    • Choi, S.U.S.1
  • 10
    • 0037902411 scopus 로고    scopus 로고
    • Investigation on convective heat transfer and flow features of nanofluids
    • Xuan Y.M., Li Q. Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer 2003, 125:151-155.
    • (2003) Journal of Heat Transfer , vol.125 , pp. 151-155
    • Xuan, Y.M.1    Li, Q.2
  • 11
    • 13144250223 scopus 로고    scopus 로고
    • A model of thermal conductivity of nanofluids with interfacial shells
    • Xue Q., Xu W.M. A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics 2005, 90:298-301.
    • (2005) Materials Chemistry and Physics , vol.90 , pp. 298-301
    • Xue, Q.1    Xu, W.M.2
  • 16
    • 77952012008 scopus 로고    scopus 로고
    • Heat transfer characteristics of a two-phase closed thermosyphon using deionized water mixed with silver nano
    • Paramatthanuwat T., Boothaisong S., Rittidech S., Booddachan K. Heat transfer characteristics of a two-phase closed thermosyphon using deionized water mixed with silver nano. Heat Mass Transfer 2010, 46:281-285.
    • (2010) Heat Mass Transfer , vol.46 , pp. 281-285
    • Paramatthanuwat, T.1    Boothaisong, S.2    Rittidech, S.3    Booddachan, K.4
  • 18
    • 64649098950 scopus 로고    scopus 로고
    • Experimental investigation of the transient thermal performance of a bent heat pipe with grooved surface
    • Wang J. Experimental investigation of the transient thermal performance of a bent heat pipe with grooved surface. Applied Energy 2009, 86(10):2030-2037.
    • (2009) Applied Energy , vol.86 , Issue.10 , pp. 2030-2037
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.