메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages 1539-1562

Moment-based method for random effects selection in linear mixed models

Author keywords

Hard thresholding; Linear mixed model; Shrinkage estimation; Variance component selection

Indexed keywords


EID: 84866866508     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: 10.5705/ss.2011.054     Document Type: Article
Times cited : (25)

References (29)
  • 1
    • 85041932998 scopus 로고
    • Maximum likelihood identification of Gaussian autoregressive moving average models
    • Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255-265.
    • (1973) Biometrika , vol.60 , pp. 255-265
    • Akaike, H.1
  • 3
    • 78650073483 scopus 로고    scopus 로고
    • Joint variable selection of fixed and random effects in linear mixed-effects models
    • Bondell, H., Krishna, A. and Ghosh, S. (2010). Joint variable selection of fixed and random effects in linear mixed-effects models. Biometrics 66, 1069-1077.
    • (2010) Biometrics , vol.66 , pp. 1069-1077
    • Bondell, H.1    Krishna, A.2    Ghosh, S.3
  • 4
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR
    • Bondell, H. D. and Reich, B. J. (2008). Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR. Biometrics 64, 115-123.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 5
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37, 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 6
    • 0347994096 scopus 로고    scopus 로고
    • Random effects selection in linear mixed models
    • Chen, Z. and Dunson, D. (2003). Random effects selection in linear mixed models. Biometrics 59, 762-769.
    • (2003) Biometrics , vol.59 , pp. 762-769
    • Chen, Z.1    Dunson, D.2
  • 8
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96, 1348-1360.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 9
    • 0002370361 scopus 로고    scopus 로고
    • The TOMLAB optimization environment in MATLAB
    • Holmström, K. (1999). The TOMLAB optimization environment in MATLAB. Adv. Model. Optim. 1, 47-69.
    • (1999) Adv. Model. Optim. , vol.1 , pp. 47-69
    • Holmström, K.1
  • 10
    • 0022966316 scopus 로고
    • Unbalanced repeated-measures models with structured covariance matrices
    • Jennrich, R. I. and Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42, 805-820.
    • (1986) Biometrics , vol.42 , pp. 805-820
    • Jennrich, R.I.1    Schluchter, M.D.2
  • 11
    • 0003374410 scopus 로고
    • The Amsterdam growth study: A longitudinal analysis of health, fitness and lifestyle
    • Human Kinetics Publishers, Champaign IL
    • Kemper, H. (1995). The Amsterdam growth study: A longitudinal analysis of health, fitness and lifestyle. In HK Sport Science Monograph Series, 6, Human Kinetics Publishers, Champaign IL.
    • (1995) HK Sport Science Monograph Series , vol.6
    • Kemper, H.1
  • 12
    • 34548381836 scopus 로고    scopus 로고
    • Fixed and random effects selection in linear and logistic models
    • Kinney, S. K. and Dunson, D. B. (2007). Fixed and random effects selection in linear and logistic models. Biometrics 63, 690-698.
    • (2007) Biometrics , vol.63 , pp. 690-698
    • Kinney, S.K.1    Dunson, D.B.2
  • 13
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 14
    • 84950419603 scopus 로고
    • Newton-Raphson and em algorithms for linear mixed effects models for repeated measures data
    • Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algorithms for linear mixed effects models for repeated measures data. J. Amer. Statist. Assoc. 83, 1014-1022.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 1014-1022
    • Lindstrom, M.J.1    Bates, D.M.2
  • 15
    • 20344396845 scopus 로고    scopus 로고
    • YALMIP: A toolbox for modeling and optimization in MATLAB
    • Taipei, Taiwan
    • Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proc. of the CACSD Conf., Taipei, Taiwan.
    • (2004) Proc. of the CACSD Conf.
    • Löfberg, J.1
  • 16
    • 32044453305 scopus 로고    scopus 로고
    • Selecting mixed-effects models based on generalized information criterion
    • Niu, F. and Pu, P. (2006). Selecting mixed-effects models based on generalized information criterion. J. Multivariate Anal. 97, 733-758.
    • (2006) J. Multivariate Anal. , vol.97 , pp. 733-758
    • Niu, F.1    Pu, P.2
  • 17
    • 0000070978 scopus 로고
    • A strongly consistent procedure for model selection in regression problems
    • Rao, C. R. and Wu, Y. (1989). A strongly consistent procedure for model selection in regression problems. Biometrika 76, 369-374.
    • (1989) Biometrika , vol.76 , pp. 369-374
    • Rao, C.R.1    Wu, Y.2
  • 18
    • 70350337963 scopus 로고    scopus 로고
    • Generalized thresholding of large covariance matrices
    • Rothman, A., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance matrices. J. Amer. Statist. Assoc. 104, 177-186.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 177-186
    • Rothman, A.1    Levina, E.2    Zhu, J.3
  • 19
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 20
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Meth. Softw. 11-12, 625-653.
    • (1999) Optim. Meth. Softw. , vol.11-12 , pp. 625-653
    • Sturm, J.F.1
  • 21
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. J. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58, 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.J.1
  • 23
    • 21644476631 scopus 로고    scopus 로고
    • Conditional Akaike information for mixed-effects models
    • Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika 92, 351-370.
    • (2005) Biometrika , vol.92 , pp. 351-370
    • Vaida, F.1    Blanchard, S.2
  • 24
    • 84866858042 scopus 로고    scopus 로고
    • Global convergence of Gauss-Newton-MBFGS method for solving the nonlinear least squares problem
    • Wang, F., Li, D.-H. and Qi, L. (2010). Global convergence of Gauss-Newton-MBFGS method for solving the nonlinear least squares problem. Adv. Model. Optim. 12(1), 1-20.
    • (2010) Adv. Model. Optim. , vol.12 , Issue.1 , pp. 1-20
    • Wang, F.1    Li, D.-H.2    Qi, L.3
  • 25
    • 34547164089 scopus 로고    scopus 로고
    • Robust regression shrinkage and consistent variable selection via the lad-lasso
    • Wang, F., Li, D.-H. and Jiang, G. (2007). Robust regression shrinkage and consistent variable selection via the lad-lasso. J. Bus. Econ. Stat. 20, 347-355.
    • (2007) J. Bus. Econ. Stat. , vol.20 , pp. 347-355
    • Wang, F.1    Li, D.-H.2    Jiang, G.3
  • 26
    • 79960824743 scopus 로고
    • Covariance structure selection in general mixed models
    • Wolfinger, R. D. (1993). Covariance structure selection in general mixed models. Comm. Statist. Simul. Comput. 22, 1079-1106.
    • (1993) Comm. Statist. Simul. Comput. , vol.22 , pp. 1079-1106
    • Wolfinger, R.D.1
  • 27
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive lasso for Cox's proportional hazards model
    • Zhang, H. H. and Lu, W. (2007). Adaptive lasso for Cox's proportional hazards model. Biometrika 94, 691-703.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 28
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101, 1418-1429.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 29
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67, 301-320.
    • (2005) J. Roy. Statist. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.