-
1
-
-
85041932998
-
Maximum likelihood identification of Gaussian autoregressive moving average models
-
Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255-265.
-
(1973)
Biometrika
, vol.60
, pp. 255-265
-
-
Akaike, H.1
-
2
-
-
33646544761
-
Longitudinal data model selection
-
Azari, R., Li, L. and Tsai, C.-L. (2006). Longitudinal data model selection. Comput. Statist. Data Anal. 50, 3053-3066.
-
(2006)
Comput. Statist. Data Anal.
, vol.50
, pp. 3053-3066
-
-
Azari, R.1
Li, L.2
Tsai, C.-L.3
-
3
-
-
78650073483
-
Joint variable selection of fixed and random effects in linear mixed-effects models
-
Bondell, H., Krishna, A. and Ghosh, S. (2010). Joint variable selection of fixed and random effects in linear mixed-effects models. Biometrics 66, 1069-1077.
-
(2010)
Biometrics
, vol.66
, pp. 1069-1077
-
-
Bondell, H.1
Krishna, A.2
Ghosh, S.3
-
4
-
-
39849102639
-
Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR
-
Bondell, H. D. and Reich, B. J. (2008). Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR. Biometrics 64, 115-123.
-
(2008)
Biometrics
, vol.64
, pp. 115-123
-
-
Bondell, H.D.1
Reich, B.J.2
-
5
-
-
84874257732
-
Better subset regression using the nonnegative garrote
-
Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37, 373-384.
-
(1995)
Technometrics
, vol.37
, pp. 373-384
-
-
Breiman, L.1
-
6
-
-
0347994096
-
Random effects selection in linear mixed models
-
Chen, Z. and Dunson, D. (2003). Random effects selection in linear mixed models. Biometrics 59, 762-769.
-
(2003)
Biometrics
, vol.59
, pp. 762-769
-
-
Chen, Z.1
Dunson, D.2
-
8
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96, 1348-1360.
-
(2001)
J. Amer. Statist. Assoc.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
9
-
-
0002370361
-
The TOMLAB optimization environment in MATLAB
-
Holmström, K. (1999). The TOMLAB optimization environment in MATLAB. Adv. Model. Optim. 1, 47-69.
-
(1999)
Adv. Model. Optim.
, vol.1
, pp. 47-69
-
-
Holmström, K.1
-
10
-
-
0022966316
-
Unbalanced repeated-measures models with structured covariance matrices
-
Jennrich, R. I. and Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42, 805-820.
-
(1986)
Biometrics
, vol.42
, pp. 805-820
-
-
Jennrich, R.I.1
Schluchter, M.D.2
-
11
-
-
0003374410
-
The Amsterdam growth study: A longitudinal analysis of health, fitness and lifestyle
-
Human Kinetics Publishers, Champaign IL
-
Kemper, H. (1995). The Amsterdam growth study: A longitudinal analysis of health, fitness and lifestyle. In HK Sport Science Monograph Series, 6, Human Kinetics Publishers, Champaign IL.
-
(1995)
HK Sport Science Monograph Series
, vol.6
-
-
Kemper, H.1
-
12
-
-
34548381836
-
Fixed and random effects selection in linear and logistic models
-
Kinney, S. K. and Dunson, D. B. (2007). Fixed and random effects selection in linear and logistic models. Biometrics 63, 690-698.
-
(2007)
Biometrics
, vol.63
, pp. 690-698
-
-
Kinney, S.K.1
Dunson, D.B.2
-
13
-
-
0020333131
-
Random-effects models for longitudinal data
-
Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
-
(1982)
Biometrics
, vol.38
, pp. 963-974
-
-
Laird, N.M.1
Ware, J.H.2
-
14
-
-
84950419603
-
Newton-Raphson and em algorithms for linear mixed effects models for repeated measures data
-
Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algorithms for linear mixed effects models for repeated measures data. J. Amer. Statist. Assoc. 83, 1014-1022.
-
(1988)
J. Amer. Statist. Assoc.
, vol.83
, pp. 1014-1022
-
-
Lindstrom, M.J.1
Bates, D.M.2
-
15
-
-
20344396845
-
YALMIP: A toolbox for modeling and optimization in MATLAB
-
Taipei, Taiwan
-
Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proc. of the CACSD Conf., Taipei, Taiwan.
-
(2004)
Proc. of the CACSD Conf.
-
-
Löfberg, J.1
-
16
-
-
32044453305
-
Selecting mixed-effects models based on generalized information criterion
-
Niu, F. and Pu, P. (2006). Selecting mixed-effects models based on generalized information criterion. J. Multivariate Anal. 97, 733-758.
-
(2006)
J. Multivariate Anal.
, vol.97
, pp. 733-758
-
-
Niu, F.1
Pu, P.2
-
17
-
-
0000070978
-
A strongly consistent procedure for model selection in regression problems
-
Rao, C. R. and Wu, Y. (1989). A strongly consistent procedure for model selection in regression problems. Biometrika 76, 369-374.
-
(1989)
Biometrika
, vol.76
, pp. 369-374
-
-
Rao, C.R.1
Wu, Y.2
-
18
-
-
70350337963
-
Generalized thresholding of large covariance matrices
-
Rothman, A., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance matrices. J. Amer. Statist. Assoc. 104, 177-186.
-
(2009)
J. Amer. Statist. Assoc.
, vol.104
, pp. 177-186
-
-
Rothman, A.1
Levina, E.2
Zhu, J.3
-
19
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464.
-
(1978)
Ann. Statist.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
20
-
-
0033296299
-
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
-
Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Meth. Softw. 11-12, 625-653.
-
(1999)
Optim. Meth. Softw.
, vol.11-12
, pp. 625-653
-
-
Sturm, J.F.1
-
21
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. J. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58, 267-288.
-
(1996)
J. Roy. Statist. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.J.1
-
23
-
-
21644476631
-
Conditional Akaike information for mixed-effects models
-
Vaida, F. and Blanchard, S. (2005). Conditional Akaike information for mixed-effects models. Biometrika 92, 351-370.
-
(2005)
Biometrika
, vol.92
, pp. 351-370
-
-
Vaida, F.1
Blanchard, S.2
-
24
-
-
84866858042
-
Global convergence of Gauss-Newton-MBFGS method for solving the nonlinear least squares problem
-
Wang, F., Li, D.-H. and Qi, L. (2010). Global convergence of Gauss-Newton-MBFGS method for solving the nonlinear least squares problem. Adv. Model. Optim. 12(1), 1-20.
-
(2010)
Adv. Model. Optim.
, vol.12
, Issue.1
, pp. 1-20
-
-
Wang, F.1
Li, D.-H.2
Qi, L.3
-
25
-
-
34547164089
-
Robust regression shrinkage and consistent variable selection via the lad-lasso
-
Wang, F., Li, D.-H. and Jiang, G. (2007). Robust regression shrinkage and consistent variable selection via the lad-lasso. J. Bus. Econ. Stat. 20, 347-355.
-
(2007)
J. Bus. Econ. Stat.
, vol.20
, pp. 347-355
-
-
Wang, F.1
Li, D.-H.2
Jiang, G.3
-
26
-
-
79960824743
-
Covariance structure selection in general mixed models
-
Wolfinger, R. D. (1993). Covariance structure selection in general mixed models. Comm. Statist. Simul. Comput. 22, 1079-1106.
-
(1993)
Comm. Statist. Simul. Comput.
, vol.22
, pp. 1079-1106
-
-
Wolfinger, R.D.1
-
27
-
-
34548151636
-
Adaptive lasso for Cox's proportional hazards model
-
Zhang, H. H. and Lu, W. (2007). Adaptive lasso for Cox's proportional hazards model. Biometrika 94, 691-703.
-
(2007)
Biometrika
, vol.94
, pp. 691-703
-
-
Zhang, H.H.1
Lu, W.2
-
28
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101, 1418-1429.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
29
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. Roy. Statist. Soc. Ser. B 67, 301-320.
-
(2005)
J. Roy. Statist. Soc. Ser. B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|