메뉴 건너뛰기




Volumn , Issue , 2011, Pages 399-405

Using visual information to predict lexical preference

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; LINGUISTICS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84866860630     PISSN: 13138502     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (24)
  • 1
    • 84881061488 scopus 로고    scopus 로고
    • Learning bilingual lexicons using the visual similarity of labeled web images
    • S. Bergsma and B. Van Durme. 2011. Learning bilingual lexicons using the visual similarity of labeled web images. In Proc. IJCAI.
    • (2011) Proc. IJCAI
    • Bergsma, S.1    Van Durme, B.2
  • 2
    • 79952274978 scopus 로고    scopus 로고
    • Discriminative learning of selectional preference from unlabeled text
    • S. Bergsma, D. Lin, and R. Goebel. 2008. Discriminative learning of selectional preference from unlabeled text. In Proc. EMNLP, pages 59-68.
    • (2008) Proc. EMNLP , pp. 59-68
    • Bergsma, S.1    Lin, D.2    Goebel, R.3
  • 3
    • 84855240161 scopus 로고    scopus 로고
    • Improving the use of pseudo-words for evaluating selectional preferences
    • N. Chambers and D. Jurafsky. 2010. Improving the use of pseudo-words for evaluating selectional preferences. In Proc. ACL, pages 445-453.
    • (2010) Proc. ACL , pp. 445-453
    • Chambers, N.1    Jurafsky, D.2
  • 4
    • 0032594951 scopus 로고    scopus 로고
    • Support vector machines for histogram-based image classification
    • O. Chapelle, P. Haffner, and V. Vapnik. 1999. Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks, 10(5):1055-1064.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 1055-1064
    • Chapelle, O.1    Haffner, P.2    Vapnik, V.3
  • 5
    • 0040669675 scopus 로고    scopus 로고
    • Class-based probability estimation using a semantic hierarchy
    • S. Clark and D. Weir. 2002. Class-based probability estimation using a semantic hierarchy. Computational Linguistics, 28(2):187-206.
    • (2002) Computational Linguistics , vol.28 , Issue.2 , pp. 187-206
    • Clark, S.1    Weir, D.2
  • 6
    • 0040270178 scopus 로고
    • Automatic processing of large corpora for the resolution of anaphora references
    • I. Dagan and A. Itai. 1990. Automatic processing of large corpora for the resolution of anaphora references. In Proc. COLING, pages 330-332.
    • (1990) Proc. COLING , pp. 330-332
    • Dagan, I.1    Itai, A.2
  • 7
    • 0032633485 scopus 로고    scopus 로고
    • Similarity-based models of word cooccurrence probabilities
    • I. Dagan, L. Lee, and F. C. N. Pereira. 1999. Similarity-based models of word cooccurrence probabilities. Mach. Learn., 34(1-3):43-69.
    • (1999) Mach. Learn. , vol.34 , Issue.1-3 , pp. 43-69
    • Dagan, I.1    Lee, L.2    Pereira, F.C.N.3
  • 8
    • 40549119527 scopus 로고    scopus 로고
    • Features for image retrieval: An experimental comparison
    • T. Deselaers, D. Keysers, and H. Ney. 2008. Features for image retrieval: an experimental comparison. Information Retrieval, 11:77-107.
    • (2008) Information Retrieval , vol.11 , pp. 77-107
    • Deselaers, T.1    Keysers, D.2    Ney, H.3
  • 9
    • 77958537272 scopus 로고    scopus 로고
    • A simple, similarity-based model for selectional preference
    • K. Erk. 2007. A simple, similarity-based model for selectional preference. In Proc. ACL, pages 216-223.
    • (2007) Proc. ACL , pp. 216-223
    • Erk, K.1
  • 11
    • 80053231413 scopus 로고    scopus 로고
    • Topic models for image annotation and text illustration
    • Y. Feng and M. Lapata. 2010a. Topic models for image annotation and text illustration. In Proc. HLTNAACL, pages 831-839.
    • (2010) Proc. HLTNAACL , pp. 831-839
    • Feng, Y.1    Lapata, M.2
  • 12
    • 79953883820 scopus 로고    scopus 로고
    • Visual information in semantic representation
    • Y. Feng and M. Lapata. 2010b. Visual information in semantic representation. In Proc. HLT-NAACL, pages 91-99.
    • (2010) Proc. HLT-NAACL , pp. 91-99
    • Feng, Y.1    Lapata, M.2
  • 13
    • 33745839880 scopus 로고    scopus 로고
    • Learning object categories from Google's Image Search
    • R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. 2005. Learning object categories from Google's Image Search. In Proc. ICCV, pages 1816-1823.
    • (2005) Proc. ICCV , pp. 1816-1823
    • Fergus, R.1    Fei-Fei, L.2    Perona, P.3    Zisserman, A.4
  • 14
    • 85055298846 scopus 로고
    • Structural ambiguity and lexical relations
    • D. Hindle and M. Rooth. 1993. Structural ambiguity and lexical relations. Computational Linguistics, 19(1):103-120.
    • (1993) Computational Linguistics , vol.19 , Issue.1 , pp. 103-120
    • Hindle, D.1    Rooth, M.2
  • 15
    • 0344154400 scopus 로고    scopus 로고
    • Using the web to obtain frequencies for unseen bigrams
    • F. Keller and M. Lapata. 2003. Using the web to obtain frequencies for unseen bigrams. Computational Linguistics, 29(3):459-484.
    • (2003) Computational Linguistics , vol.29 , Issue.3 , pp. 459-484
    • Keller, F.1    Lapata, M.2
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. IJCV, 60:91-110.
    • (2004) IJCV , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 18
    • 84859952910 scopus 로고    scopus 로고
    • Latent variable models of selectional preference
    • D. Ó Séaghdha. 2010. Latent variable models of selectional preference. In Proc. ACL, pages 435-444.
    • (2010) Proc. ACL , pp. 435-444
    • O'Séaghdha, D.1
  • 19
    • 36548999696 scopus 로고    scopus 로고
    • The role of context in object recognition
    • A. Oliva and A. Torralba. 2007. The role of context in object recognition. Trends in Cognitive Sciences, 11(12):520-527.
    • (2007) Trends in Cognitive Sciences , vol.11 , Issue.12 , pp. 520-527
    • Oliva, A.1    Torralba, A.2
  • 20
    • 56349169361 scopus 로고    scopus 로고
    • Combining syntax and thematic fit in a probabilistic model of sentence processing
    • U. Padó, F. Keller, and M. Crocker. 2006. Combining syntax and thematic fit in a probabilistic model of sentence processing. In Proc. CogSci, pages 657-662.
    • (2006) Proc. CogSci , pp. 657-662
    • Padó, U.1    Keller, F.2    Crocker, M.3
  • 21
    • 0030254974 scopus 로고    scopus 로고
    • Selectional constraints: An information-theoretic model and its computational realization
    • P. Resnik. 1996. Selectional constraints: An information-theoretic model and its computational realization. Cognition, 61:127-159.
    • (1996) Cognition , vol.61 , pp. 127-159
    • Resnik, P.1
  • 23
    • 84859980796 scopus 로고    scopus 로고
    • A latent dirichlet allocation method for selectional preferences
    • A. Ritter, Mausam, and O. Etzioni. 2010. A latent dirichlet allocation method for selectional preferences. In Proc. ACL, pages 424-434.
    • (2010) Proc. ACL , pp. 424-434
    • Ritter Mausam, A.1    Etzioni, O.2
  • 24
    • 78650701722 scopus 로고    scopus 로고
    • Inducing a semantically annotated lexicon via EM-based clustering
    • M. Rooth, S. Riezler, D. Prescher, G. Carroll, and F. Beil. 1999. Inducing a semantically annotated lexicon via EM-based clustering. In Proc. ACL, pages 104-111.
    • (1999) Proc. ACL , pp. 104-111
    • Rooth, M.1    Riezler, S.2    Prescher, D.3    Carroll, G.4    Beil, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.