-
2
-
-
0034592912
-
Scaling up dynamic time warping for datamining applications
-
Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: KDD, pp. 285-289 (2000)
-
(2000)
KDD
, pp. 285-289
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
3
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and mining of time series data: experimental comparison of representations and distance measures. PVLDB 1(2), 1542-1552 (2008)
-
(2008)
PVLDB
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.J.5
-
4
-
-
56349096866
-
Support vector machines and dynamic time warping for time series
-
IEEE
-
Gudmundsson, S., Runarsson, T.P., Sigurdsson, S.: Support vector machines and dynamic time warping for time series. In: IJCNN, pp. 2772-2776. IEEE (2008)
-
(2008)
IJCNN
, pp. 2772-2776
-
-
Gudmundsson, S.1
Runarsson, T.P.2
Sigurdsson, S.3
-
5
-
-
84902142380
-
-
Springer
-
Schölkopf, B., Burges, C., Vapnik, V.: Incorporating invariances in support vector learning machines, pp. 47-52. Springer (1996)
-
(1996)
Incorporating Invariances in Support Vector Learning Machines
, pp. 47-52
-
-
Schölkopf, B.1
Burges, C.2
Vapnik, V.3
-
6
-
-
0036161034
-
Training invariant support vector machines
-
DeCoste, D., Schölkopf, B.: Training invariant support vector machines. Machine Learning 46(1-3), 161-190 (2002)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 161-190
-
-
DeCoste, D.1
Schölkopf, B.2
-
7
-
-
77953984100
-
Image deformation using moving least squares
-
Schaefer, S., McPhail, T., Warren, J.D.: Image deformation using moving least squares. ACM Trans. Graph. 25(3), 533-540 (2006)
-
(2006)
ACM Trans. Graph.
, vol.25
, Issue.3
, pp. 533-540
-
-
Schaefer, S.1
McPhail, T.2
Warren, J.D.3
-
8
-
-
0031034197
-
Predictive modular neural networks for time series classification
-
Kehagias, A., Petridis, V.: Predictive modular neural networks for time series classification. Neural Networks 10(1), 31-49 (1997)
-
(1997)
Neural Networks
, vol.10
, Issue.1
, pp. 31-49
-
-
Kehagias, A.1
Petridis, V.2
-
9
-
-
33744973448
-
Feature-based classification of timeseries data
-
Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of timeseries data. International Journal of Computer Research 10, 49-61 (2001)
-
(2001)
International Journal of Computer Research
, vol.10
, pp. 49-61
-
-
Nanopoulos, A.1
Alcock, R.2
Manolopoulos, Y.3
-
10
-
-
82955244472
-
Time-series classification using mixed-state dynamic bayesian networks
-
IEEE Computer Society
-
Pavlovic, V., Frey, B.J., Huang, T.S.: Time-series classification using mixed-state dynamic bayesian networks. In: CVPR, p. 2609. IEEE Computer Society (1999)
-
(1999)
CVPR
, pp. 2609
-
-
Pavlovic, V.1
Frey, B.J.2
Huang, T.S.3
-
11
-
-
2442543440
-
Interval and dynamic time warping-based decision trees
-
ACM, New York
-
Rodríguez, J.J., Alonso, C.J.: Interval and dynamic time warping-based decision trees. In: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC 2004, pp. 548-552. ACM, New York (2004)
-
(2004)
Proceedings of the 2004 ACM Symposium on Applied Computing, SAC 2004
, pp. 548-552
-
-
Rodríguez, J.J.1
Alonso, C.J.2
-
12
-
-
84974705046
-
Learning First Order Logic Time Series Classifiers: Rules and Boosting
-
Zighed, D.A., Komorowski, J., Z? ytkow, J.M. (eds.) PKDD 2000. Springer, Heidelberg
-
Rodríguez, J.J., Alonso, C.J., Boström, H.: Learning First Order Logic Time Series Classifiers: Rules and Boosting. In: Zighed, D.A., Komorowski, J., Z? ytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 299-308. Springer, Heidelberg (2000)
-
(2000)
LNCS (LNAI)
, vol.1910
, pp. 299-308
-
-
Rodríguez, J.J.1
Alonso, C.J.2
Boström, H.3
-
13
-
-
33745169465
-
Modeling waveform shapes with random effects segmental hidden markov models
-
AUAI Press
-
Kim, S., Smyth, P., Luther, S.: Modeling waveform shapes with random effects segmental hidden markov models. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI 2004, Arlington, Virginia, United States, pp. 309-316. AUAI Press (2004)
-
(2004)
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI 2004, Arlington, Virginia, United States
, pp. 309-316
-
-
Kim, S.1
Smyth, P.2
Luther, S.3
-
14
-
-
33644924597
-
Embedding of time series data by using dynamic time warping distances
-
Mizuhara, Y., Hayashi, A., Suematsu, N.: Embedding of time series data by using dynamic time warping distances. Syst. Comput. Japan 37(3), 1-9 (2006)
-
(2006)
Syst. Comput. Japan
, vol.37
, Issue.3
, pp. 1-9
-
-
Mizuhara, Y.1
Hayashi, A.2
Suematsu, N.3
-
15
-
-
33749260341
-
Fast time series classification using numerosity reduction
-
ICML. ACM
-
Xi, X., Keogh, E.J., Shelton, C.R.,Wei, L., Ratanamahatana, C.A.: Fast time series classification using numerosity reduction. In: ICML. ACM International Conference Proceeding Series, vol. 148, pp. 1033-1040. ACM (2006)
-
(2006)
ACM International Conference Proceeding Series
, vol.148
, pp. 1033-1040
-
-
Xi, X.1
Keogh, E.J.2
Shelton, C.R.3
Wei, L.4
Ratanamahatana, C.A.5
-
16
-
-
14844285758
-
Exact indexing of dynamic time warping
-
Keogh, E.J., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358-386 (2005)
-
(2005)
Knowl. Inf. Syst.
, vol.7
, Issue.3
, pp. 358-386
-
-
Keogh, E.J.1
Ratanamahatana, C.A.2
-
17
-
-
0032203371
-
Incorporating prior information in machine learning by creating virtual examples
-
Niyogi, P., Girosi, F., Poggio, T.: Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 2196-2209 (1998)
-
(1998)
Proceedings of the IEEE
, pp. 2196-2209
-
-
Niyogi, P.1
Girosi, F.2
Poggio, T.3
-
18
-
-
84866854337
-
Invariances in classification: An efficient svm implementation
-
Loosli, G., Canu, S., Vishwanathan, S.V.N., Smola, A.J.: Invariances in classification: an efficient svm implementation. In: Proceedings of the 11th International Symposium on Applied Stochastic Models and Data Analysis (2005)
-
Proceedings of the 11th International Symposium on Applied Stochastic Models and Data Analysis (2005)
-
-
Loosli, G.1
Canu, S.2
Vishwanathan, S.V.N.3
Smola, A.J.4
-
19
-
-
57849102080
-
Training invariant support vector machines using selective sampling
-
Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) MIT Press, Cambridge
-
Loosli, G., Canu, S., Bottou, L.: Training invariant support vector machines using selective sampling. In: Bottou, L., Chapelle, O., DeCoste, D., Weston, J. (eds.) Large Scale Kernel Machines, pp. 301-320. MIT Press, Cambridge (2007)
-
(2007)
Large Scale Kernel Machines
, pp. 301-320
-
-
Loosli, G.1
Canu, S.2
Bottou, L.3
-
20
-
-
85006763464
-
Support vector machine with dynamic time-alignment kernel for speech recognition
-
Dalsgaard, P., Lindberg, B., Benner, H., Tan, Z.H. (eds.)
-
Shimodaira, H.: Noma, K.-i., Nakai,M., Sagayama, S.: Support vector machine with dynamic time-alignment kernel for speech recognition. In: Dalsgaard, P., Lindberg, B., Benner, H., Tan, Z.H. (eds.) INTERSPEECH, ISCA, pp. 1841-1844 (2001)
-
(2001)
INTERSPEECH, ISCA
, pp. 1841-1844
-
-
Shimodaira, H.1
Noma, K.-I.2
Nakai, M.3
Sagayama, S.4
-
21
-
-
84893499976
-
On-line handwriting recognition with support vector machines - A kernel approach
-
Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line handwriting recognition with support vector machines - a kernel approach. In: Proc. of the 8th IWFHR, pp. 49-54 (2002)
-
(2002)
Proc. of the 8th IWFHR
, pp. 49-54
-
-
Bahlmann, C.1
Haasdonk, B.2
Burkhardt, H.3
-
22
-
-
78149485597
-
Time series classification using support vector machine with gaussian elastic metric kernel
-
IEEE
-
Zhang, D., Zuo, W., Zhang, D., Zhang, H.: Time series classification using support vector machine with gaussian elastic metric kernel. In: ICPR, pp. 29-32. IEEE (2010)
-
(2010)
ICPR
, pp. 29-32
-
-
Zhang, D.1
Zuo, W.2
Zhang, D.3
Zhang, H.4
-
23
-
-
36048964972
-
Learning to transform time series with a few examples
-
Rahimi, A., Recht, B., Darrell, T.: Learning to transform time series with a few examples. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1759-1775 (2007)
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.10
, pp. 1759-1775
-
-
Rahimi, A.1
Recht, B.2
Darrell, T.3
|