-
1
-
-
0003684449
-
The Elements of Statistical Learning
-
ser. New York, NY, USA: Springer New York Inc.
-
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, ser. Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.
-
(2001)
Springer Series in Statistics
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
2
-
-
0002442796
-
Machine learning in automated text categorization
-
F. Sebastiani and C. N. D. Ricerche, "Machine learning in automated text categorization," ACM Computing Surveys, vol. 34, pp. 1-47, 2002.
-
(2002)
ACM Computing Surveys
, vol.34
, pp. 1-47
-
-
Sebastiani, F.1
Ricerche, C.N.D.2
-
3
-
-
0003141935
-
A comparative study on feature selection in text categorization
-
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Online. Available
-
Y. Yang and J. O. Pedersen, "A comparative study on feature selection in text categorization," in Proceedings of the Fourteenth International Conference on Machine Learning, ser. ICML '97. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997, pp. 412-420. [Online]. Available: http://dl.acm.org/citation.cfm?id=645526.657137
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning, Ser. ICML '97
, pp. 412-420
-
-
Yang, Y.1
Pedersen, J.O.2
-
4
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
G. Forman, "An extensive empirical study of feature selection metrics for text classification," The Journal of Machine Learning Research, vol. 3, pp. 1289-1305, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
6
-
-
0030651099
-
Feature selection, perceptron learning, and a usability case study for text categorization
-
New York, NY, USA: ACM, Online. Available
-
H. T. Ng, W. B. Goh, and K. L. Low, "Feature selection, perceptron learning, and a usability case study for text categorization," in Proceedings of the 20th annual international ACM SIGIR conference on Research and development in information retrieval, ser. SIGIR '97. New York, NY, USA: ACM, 1997, pp. 67-73. [Online]. Available: http://doi.acm.org/10.1145/258525. 258537
-
(1997)
Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Ser. SIGIR '97
, pp. 67-73
-
-
Ng, H.T.1
Goh, W.B.2
Low, K.L.3
-
8
-
-
16644402628
-
Feature selection for text categorization on imbalanced data
-
Z. Zheng, X. Wu, and R. Srihari, "Feature selection for text categorization on imbalanced data," ACM SIGKDD Explorations Newsletter, vol. 6, pp. 80-89, 2004.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, pp. 80-89
-
-
Zheng, Z.1
Wu, X.2
Srihari, R.3
-
10
-
-
77956514662
-
Complete gini-index text (git) feature-selection algorithm for text classification
-
H. Park, S. Kwon, and H.-C. Kwon, "Complete gini-index text (git) feature-selection algorithm for text classification," in Software Engineering and Data Mining (SEDM), 2010 2nd International Conference on, 2010, pp. 366-371.
-
(2010)
Software Engineering and Data Mining (SEDM), 2010 2nd International Conference on
, pp. 366-371
-
-
Park, H.1
Kwon, S.2
Kwon, H.-C.3
-
11
-
-
84866855157
-
-
W. Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and Z. Wang, "A novel feature selection algorithm for text categorization," vol. 33, no. 1, 2007.
-
(2007)
A Novel Feature Selection Algorithm for Text Categorization
, vol.33
, Issue.1
-
-
Shang, W.1
Huang, H.2
Zhu, H.3
Lin, Y.4
Qu, Y.5
Wang, Z.6
-
13
-
-
70349671213
-
Predicting positive p53 cancer rescue regions using most informative positive (mip) active learning
-
09
-
S. A. Danziger, R. Baronio, L. Ho, L. Hall, K. Salmon, G. W. Hatfield, P. Kaiser, and R. H. Lathrop, "Predicting positive p53 cancer rescue regions using most informative positive (mip) active learning," PLoS Comput Biol, vol. 5, no. 9, 09 2009.
-
(2009)
PLoS Comput Biol
, vol.5
, Issue.9
-
-
Danziger, S.A.1
Baronio, R.2
Ho, L.3
Hall, L.4
Salmon, K.5
Hatfield, G.W.6
Kaiser, P.7
Lathrop, R.H.8
|