메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2096-2103

Bridging the past, present and future: Modeling scene activities from event relationships and global rules

Author keywords

[No Author keywords available]

Indexed keywords

CAUSAL RELATIONSHIPS; DATA SETS; FIRST ORDER; GIBBS SAMPLING; LOCAL RULES; MARKOVIAN PROCESS; MODEL PARAMETERS; MULTIPLE SCALE; TOPIC MODEL;

EID: 84866726353     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247915     Document Type: Conference Paper
Times cited : (23)

References (18)
  • 1
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • D. M. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. JMLR, pages 993-1022, 2003.
    • (2003) JMLR , pp. 993-1022
    • Blei, D.M.1    Ng, A.2    Jordan, M.3
  • 2
    • 80052882125 scopus 로고    scopus 로고
    • Extracting and locating temporal motifs in video scenes using a hierarchical non parametric bayesian model
    • R. Emonet, J. Varadarajan, and J.-M. Odobez. Extracting and locating temporal motifs in video scenes using a hierarchical non parametric bayesian model. In CVPR, 2011.
    • (2011) CVPR
    • Emonet, R.1    Varadarajan, J.2    Odobez, J.-M.3
  • 3
    • 80053973731 scopus 로고    scopus 로고
    • Multi-camera open space human activity discovery for anomaly detection
    • R. Emonet, J. Varadarajan, and J.-M. Odobez. Multi-camera open space human activity discovery for anomaly detection. In AVSS, 2011.
    • (2011) AVSS
    • Emonet, R.1    Varadarajan, J.2    Odobez, J.-M.3
  • 6
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probability latent semantic analysis
    • T. Hofmann. Unsupervised learning by probability latent semantic analysis. Machine Learning, 42:177-196, 2001.
    • (2001) Machine Learning , vol.42 , pp. 177-196
    • Hofmann, T.1
  • 7
    • 85085175172 scopus 로고    scopus 로고
    • A Markov clustering topic model for mining behavior in video
    • T. Hospedales, S. Gong, and T. Xiang. A Markov clustering topic model for mining behavior in video. In ICCV, 2009.
    • (2009) ICCV
    • Hospedales, T.1    Gong, S.2    Xiang, T.3
  • 8
    • 77956008040 scopus 로고    scopus 로고
    • What's going on? Discovering spatio-temporal dependencies in dynamic scenes
    • D. Kuettel, M. D. Breitenstein, L. V. Gool, and V. Ferrari. What's going on? discovering spatio-temporal dependencies in dynamic scenes. In CVPR, 2010.
    • (2010) CVPR
    • Kuettel, D.1    Breitenstein, M.D.2    Gool, L.V.3    Ferrari, V.4
  • 9
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-time tracking
    • C. Stauffer and E. L.Grimson. Learning patterns of activity using real-time tracking. IEEE T-PAMI, 22:747-757, 2000.
    • (2000) IEEE T-PAMI , vol.22 , pp. 747-757
    • Stauffer, C.1    Grimson, E.L.2
  • 11
    • 84898422540 scopus 로고    scopus 로고
    • Probabilistic latent sequential motifs: Discovering temporal activity patterns in video scenes
    • J. Varadarajan, R. Emonet, and J. Odobez. Probabilistic latent sequential motifs: Discovering temporal activity patterns in video scenes. In BMVC, 2010.
    • (2010) BMVC
    • Varadarajan, J.1    Emonet, R.2    Odobez, J.3
  • 12
    • 84866667203 scopus 로고    scopus 로고
    • Topic models for scene analysis and abnormality detection
    • J. Varadarajan and J. Odobez. Topic models for scene analysis and abnormality detection. In IEEE IWVS, 2009.
    • (2009) IEEE IWVS
    • Varadarajan, J.1    Odobez, J.2
  • 13
    • 80052885969 scopus 로고    scopus 로고
    • Automatic adaptation of a generic pedestrian detector to a specific traffic scene
    • M. Wang and X. Wang. Automatic adaptation of a generic pedestrian detector to a specific traffic scene. In CVPR, 2011.
    • (2011) CVPR
    • Wang, M.1    Wang, X.2
  • 14
    • 63849117955 scopus 로고    scopus 로고
    • Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models
    • X. Wang, X. Ma, and E. L. Grimson. Unsupervised activity perception in crowded and complicated scenes using hierarchical bayesian models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3):539-555, 2009.
    • (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.31 , Issue.3 , pp. 539-555
    • Wang, X.1    Ma, X.2    Grimson, E.L.3
  • 15
    • 49749087162 scopus 로고    scopus 로고
    • Topical n-grams: Phrase and topic discovery, with an application to information retrieval
    • X.Wang, A. Mccallum, and X.Wei. Topical n-grams: Phrase and topic discovery, with an application to information retrieval. In IEEE Int. Conference on Data Mining, 2007.
    • (2007) IEEE Int. Conference on Data Mining
    • Wang, X.1    McCallum, A.2    Wei, X.3
  • 16
    • 77953210039 scopus 로고    scopus 로고
    • Correspondence-free activity analysis and scene modeling in multiple camera views
    • X.Wang, K. Tieu, and E. Grimson. Correspondence-free activity analysis and scene modeling in multiple camera views. IEEE T-PAMI, 1(1):893-908, 2009.
    • (2009) IEEE T-PAMI , vol.1 , Issue.1 , pp. 893-908
    • Wang, X.1    Tieu, K.2    Grimson, E.3
  • 17
    • 77953227533 scopus 로고    scopus 로고
    • Video scene understanding using multi-scale analysis
    • Y. Yang, J. Liu, and M. Shah. Video scene understanding using multi-scale analysis. In ICCV, 2009.
    • (2009) ICCV
    • Yang, Y.1    Liu, J.2    Shah, M.3
  • 18
    • 80052896501 scopus 로고    scopus 로고
    • Earth mover's prototypes: A convex learning approach for discovering activity patterns in dynamic scenes
    • G. Zen and E. Ricci. Earth mover's prototypes: a convex learning approach for discovering activity patterns in dynamic scenes. In CVPR, 2011.
    • (2011) CVPR
    • Zen, G.1    Ricci, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.