메뉴 건너뛰기




Volumn 2012, Issue , 2012, Pages

Positive solutions for boundary value problem of fractional differential equation with p-Laplacian operator

Author keywords

Fixed point index; Fractional differential equations; Multiplicity of solutions; P Laplacian operator; Positive solution

Indexed keywords


EID: 84866712172     PISSN: 16872762     EISSN: 16872770     Source Type: Journal    
DOI: 10.1186/1687-2770-2012-18     Document Type: Article
Times cited : (100)

References (35)
  • 1
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • doi:10.1016/S0006-3495(95)80157-8
    • Glockle, WG, Nonnenmacher, TF: A fractional calculus approach of self-similar protein dynamics. Biophys J. 68, 46-53 (1995). doi:10.1016/S0006- 3495(95)80157-8
    • (1995) Biophys J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 2
    • 38149084572 scopus 로고    scopus 로고
    • Applications of fractional calculus in physics
    • Singapore
    • Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • (2000) World Scientific
    • Hilfer, R.1
  • 3
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • doi:10.1063/1.470346
    • Metzler, F, Schick, W, Kilian, HG, Nonnenmacher, TF: Relaxation in filled polymers: a fractional calculus approach. J Chem Phys. 103, 7180-7186 (1995). doi:10.1063/1.470346
    • (1995) J Chem Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 5
    • 0242354999 scopus 로고    scopus 로고
    • Geometric and physical interpretation of fractional integration and fractional differentiation
    • Podlubny, I: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal. 5, 367-386 (2002)
    • (2002) Fract Calc Appl Anal. , vol.5 , pp. 367-386
    • Podlubny, I.1
  • 9
    • 77949264980 scopus 로고    scopus 로고
    • A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions
    • doi:10.1007/s10440-008-9356-6
    • Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl Math. 109, 973-1033 (2010). doi:10.1007/s10440-008-9356-6
    • (2010) Acta Appl Math. , vol.109 , pp. 973-1033
    • Agarwal, R.P.1    Benchohra, M.2    Hamani, S.3
  • 10
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations
    • doi:10.1016/j.jmaa.2010.04034
    • Agarwal, RP, O'Regan, D, Stanek, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J Math Anal Appl. 371, 57-68 (2010). doi:10.1016/j.jmaa.2010.04034
    • (2010) J Math Anal Appl. , vol.371 , pp. 57-68
    • Agarwal, R.P.1    O'Regan, D.2    Stanek, S.3
  • 11
    • 59849083895 scopus 로고    scopus 로고
    • Integral equations and initial value problems for nonlinear differential equations of fractional order
    • doi:10.1016/j.na.2008.03.037
    • Kosmatov, N: Integral equations and initial value problems for nonlinear differential equations of fractional order. Nonlinear Anal. 70, 2521-2529 (2009). doi:10.1016/j.na.2008.03.037
    • (2009) Nonlinear Anal. , vol.70 , pp. 2521-2529
    • Kosmatov, N.1
  • 12
    • 77953688007 scopus 로고    scopus 로고
    • Existence of a positve solution to a class of fractional differential equations
    • doi:10.1016/j.aml.2010.04.035
    • Christopher, SG: Existence of a positve solution to a class of fractional differential equations. Appl Math Lett. 23, 1050-1055 (2010). doi:10.1016/j.aml.2010.04.035
    • (2010) Appl Math Lett. , vol.23 , pp. 1050-1055
    • Christopher, S.G.1
  • 13
    • 77950189802 scopus 로고    scopus 로고
    • Existence results for the three-point impulsive boundary value problem involving fractional differential equations
    • doi:10.1016/j.camwa.2010.01.028
    • Tian, Y, Bai, Z: Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput Math Appl. 59, 2601-2609 (2010). doi:10.1016/j.camwa.2010.01.028
    • (2010) Comput Math Appl. , vol.59 , pp. 2601-2609
    • Tian, Y.1    Bai, Z.2
  • 14
    • 77950188013 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions of initial value problems for nonlinear fractional differentia equations
    • doi:10.1016/j.aml.2010.02.007
    • Deng, J, Ma, L: Existence and uniqueness of solutions of initial value problems for nonlinear fractional differentia equations. Appl Math Lett. 23, 676-680 (2010). doi:10.1016/j.aml.2010.02.007
    • (2010) Appl Math Lett. , vol.23 , pp. 676-680
    • Deng, J.1    Ma, L.2
  • 15
    • 79952445167 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equations
    • doi:10.1016/j.amc.2011.01.103
    • Zhao, Y, Sun, S, Han, Z, Zhang, M: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl Math Comput. 217, 6950-6958 (2011). doi:10.1016/j.amc.2011.01.103
    • (2011) Appl Math Comput. , vol.217 , pp. 6950-6958
    • Zhao, Y.1    Sun, S.2    Han, Z.3    Zhang, M.4
  • 16
    • 38149118737 scopus 로고    scopus 로고
    • Positive solutions of a boundary value problem for a nonlinear fractional differential equation
    • Kaufmann, ER, Mboumi, E: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron J Qual Theory Diff Equ. 3, 1-11 (2008)
    • (2008) Electron J Qual Theory Diff Equ. , vol.3 , pp. 1-11
    • Kaufmann, E.R.1    Mboumi, E.2
  • 17
    • 80052272462 scopus 로고    scopus 로고
    • Impulsive boundary value problem for nonlinear differential equations of fractional order
    • doi:10.1016/j.camwa.2011.07.026
    • Wang, X: Impulsive boundary value problem for nonlinear differential equations of fractional order. Comput Math Appl. 62, 2383-2391 (2011). doi:10.1016/j.camwa.2011.07.026
    • (2011) Comput Math Appl. , vol.62 , pp. 2383-2391
    • Wang, X.1
  • 18
    • 80053385595 scopus 로고    scopus 로고
    • Existence of solutions for fractional differential equations with multipoint boundary conditions
    • doi:10.1016/j.cnsns.2011.07.019
    • Zhou, W, Chu, Y: Existence of solutions for fractional differential equations with multipoint boundary conditions. Commun Nonlinear Sci Numer Simulat. 17, 1142-1148 (2012). doi:10.1016/j.cnsns.2011.07.019
    • (2012) Commun Nonlinear Sci Numer Simulat. , vol.17 , pp. 1142-1148
    • Zhou, W.1    Chu, Y.2
  • 19
    • 80052268620 scopus 로고    scopus 로고
    • Existence results for boundary value problems of nonlinear fractional differential equations
    • doi:10.1016/j.camwa.2011.07.025
    • Chai, G: Existence results for boundary value problems of nonlinear fractional differential equations. Comput Math Appl. 62, 2374-2382 (2011). doi:10.1016/j.camwa.2011.07.025
    • (2011) Comput Math Appl. , vol.62 , pp. 2374-2382
    • Chai, G.1
  • 20
    • 84866638484 scopus 로고    scopus 로고
    • On existence and uniqueness of positive solutions to a class of fractiona boundary value problems
    • Caballero, J, Harjani, J, Sadarangani, K: On existence and uniqueness of positive solutions to a class of fractiona boundary value problems. Bound Value Probl 25 (2011). 2011
    • (2011) Bound Value Probl , vol.25 , pp. 2011
    • Caballero, J.1    Harjani, J.2    Sadarangani, K.3
  • 21
    • 84863447182 scopus 로고    scopus 로고
    • Riemann-liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    • Ahmad, B, Nieto, JJ: Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound Value Probl 36 (2011). 2011
    • (2011) Bound Value Probl , vol.36 , pp. 2011
    • Ahmad, B.1    Nieto, J.J.2
  • 22
    • 83655192087 scopus 로고    scopus 로고
    • Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions
    • doi:10.1016/j.camwa.2011.11021
    • Yang, W: Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions. Comput Math Appl. 63, 288-297 (2012). doi:10.1016/j.camwa.2011.11021
    • (2012) Comput Math Appl. , vol.63 , pp. 288-297
    • Yang, W.1
  • 23
    • 79960976705 scopus 로고    scopus 로고
    • Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions
    • doi:10.1016/j.camwa.2011.03.001
    • Agarwa, RP, Ahmad, B: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Comput Math Appl. 62, 1200-1214 (2011). doi:10.1016/j.camwa.2011.03.001
    • (2011) Comput Math Appl. , vol.62 , pp. 1200-1214
    • Agarwa, R.P.1    Ahmad, B.2
  • 24
    • 77954461528 scopus 로고    scopus 로고
    • Positive solutions for three-point boundary value problems of nonlinear fractional differential equations with p-laplacian
    • Wang, J, Xiang, H, Liu, Z: Positive solutions for three-point boundary value problems of nonlinear fractional differential equations with p-Laplacian. Far East J Appl Math. 37, 33-47 (2009)
    • (2009) Far East J Appl Math. , vol.37 , pp. 33-47
    • Wang, J.1    Xiang, H.2    Liu, Z.3
  • 25
    • 78349250599 scopus 로고    scopus 로고
    • Upper and lower solutions method for a class of singular fractional boundary value problems with p-laplacian operator
    • (Article ID 971824)
    • Wang, J, Xiang, H, Liu, Z: Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator. Abst Appl Anal 12 (2010). 2010, (Article ID 971824)
    • (2010) Abst Appl Anal , vol.12 , pp. 2010
    • Wang, J.1    Xiang, H.2    Liu, Z.3
  • 26
    • 77957852366 scopus 로고    scopus 로고
    • New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions
    • (Article ID 720702)
    • Feng, M, Zhang, X, Ge, W: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound Value Probl 20 (2011). 2011 (Article ID 720702)
    • (2011) Bound Value Probl , vol.20 , pp. 2011
    • Feng, M.1    Zhang, X.2    Ge, W.3
  • 27
    • 78049436578 scopus 로고    scopus 로고
    • Existence and uniqueness of positive and nonde-creasing solutions for a class of singular fractional boundary value problems
    • 2009 (Article ID 421310)
    • Mena, JC, Harjani, J, Sadarangani, K: Existence and uniqueness of positive and nonde-creasing solutions for a class of singular fractional boundary value problems. Bound Value Probl 10 (2009). 2009 (Article ID 421310)
    • (2009) Bound Value Probl , vol.10
    • Mena, J.C.1    Harjani, J.2    Sadarangani, K.3
  • 28
    • 71649104924 scopus 로고    scopus 로고
    • Fractional order differential equations on an unbounded domain
    • doi:10.1016/j.na.2009.06.106
    • Arara, A, Benchohra, M, Hamidi, N, Nieto, JJ: Fractional order differential equations on an unbounded domain. Nonlinear Anal. 72, 580-586 (2010). doi:10.1016/j.na.2009.06.106
    • (2010) Nonlinear Anal. , vol.72 , pp. 580-586
    • Arara, A.1    Benchohra, M.2    Hamidi, N.3    Nieto, J.J.4
  • 29
    • 77549085429 scopus 로고    scopus 로고
    • Positive solutions for third-order Sturm-liouville boundary value problems with p-laplacian
    • doi:10.1016/j.camwa.2009.12.011
    • Yang, C, Yan, J: Positive solutions for third-order Sturm-Liouville boundary value problems with p-Laplacian. Comput Math Appl. 59, 2059-2066 (2010). doi:10.1016/j.camwa.2009.12.011
    • (2010) Comput Math Appl. , vol.59 , pp. 2059-2066
    • Yang, C.1    Yan, J.2
  • 30
    • 4344674578 scopus 로고    scopus 로고
    • Existence of solutions for a one dimensional p-Laplacian on time-scales
    • DOI 10.1080/10236190410001731416
    • Anderson, DR, Avery, RI, Henderson, J: Existence of solutions for a one-dimensional p-Laplacian on time scales. J Diff Equ Appl. 10, 889-896 (2004). doi:10.1080/10236190410001731416 (Pubitemid 39129957)
    • (2004) Journal of Difference Equations and Applications , vol.10 , Issue.10 , pp. 889-896
    • Anderson, D.1    Avery, R.2    Henderson, J.3
  • 31
    • 80053213742 scopus 로고    scopus 로고
    • The existence of a positive solution to a second-order delta-nabla p-laplacian BVP on a time scale
    • doi:10.1016/j.aml.2011.08.005
    • Goodrich, CS: The existence of a positive solution to a second-order delta-nabla p-Laplacian BVP on a time scale. Appl Math Lett. 25, 157-162 (2012). doi:10.1016/j.aml.2011.08.005
    • (2012) Appl Math Lett. , vol.25 , pp. 157-162
    • Goodrich, C.S.1
  • 32
    • 79957531333 scopus 로고    scopus 로고
    • First-order singular boundary value problems with p-laplacian on time scales
    • doi:10.1080/10236190903443111
    • Graef, JR, Kong, L: First-order singular boundary value problems with p-Laplacian on time scales. J Diff Equ Appl. 17, 831-839 (2011). doi:10.1080/10236190903443111
    • (2011) J Diff Equ Appl. , vol.17 , pp. 831-839
    • Graef, J.R.1    Kong, L.2
  • 33
    • 78651379292 scopus 로고    scopus 로고
    • Existence of a positive solution to a first-order p-laplacian BVP on a time scale
    • doi:10.1016/j.na.2010.10.062
    • Goodrich, CS: Existence of a positive solution to a first-order p-Laplacian BVP on a time scale. Nonlinear Anal. 74, 1926-1936 (2011). doi:10.1016/j.na.2010.10.062
    • (2011) Nonlinear Anal. , vol.74 , pp. 1926-1936
    • Goodrich, C.S.1
  • 34
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • DOI 10.1016/j.jmaa.2005.02.052, PII S0022247X05001733
    • Bai, Z, Lü, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J Math Anal Appl. 311, 495-505 (2005). doi:10.1016/jjmaa.2005.02.052 (Pubitemid 41350217)
    • (2005) Journal of Mathematical Analysis and Applications , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lu, H.2
  • 35
    • 0000394603 scopus 로고
    • Multiple positive solutions of nonlinear operators on ordered Banach spaces
    • doi:10.1512/iumj.1979.28.28046
    • Leggett, RW, Williams, LR: Multiple positive solutions of nonlinear operators on ordered Banach spaces. Indiana Univ Math J. 28, 673-688 (1979). doi:10.1512/iumj.1979.28.28046
    • (1979) Indiana Univ Math J. , vol.28 , pp. 673-688
    • Leggett, R.W.1    Williams, L.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.