메뉴 건너뛰기




Volumn 44, Issue 10, 2012, Pages 1261-1277

A neuro-evolutive technique applied for predicting the liquid crystalline property of some organic compounds

Author keywords

crystalline property; differential evolution; optimization; prediction; self adaptation

Indexed keywords

ACCURATE PREDICTION; BASE VECTORS; CRYSTALLINE PROPERTIES; DIFFERENTIAL EVOLUTION; DIFFERENTIAL EVOLUTION ALGORITHMS; DIRECT ENCODING; HIDDEN LAYERS; LIQUID CRYSTALLINE PROPERTIES; LIQUID PROPERTIES; MUTATION PROCESS; NEAR-OPTIMAL CONTROL; OPTIMIZATION METHODOLOGY; PARAMETRIC OPTIMIZATION; SELF ADAPTATION; SELF-ADAPTIVE;

EID: 84866700994     PISSN: 0305215X     EISSN: 10290273     Source Type: Journal    
DOI: 10.1080/0305215X.2011.644546     Document Type: Article
Times cited : (14)

References (35)
  • 1
    • 84901428622 scopus 로고    scopus 로고
    • The self-adaptive Pareto differential evolution algorithm
    • 12-17 May, Honolulu, HI. Piscataway, NJ: IEEE Press
    • Abbass, H., 2002. The self-adaptive Pareto differential evolution algorithm. In: Congress on evolutionary computation (CEC'2002), 12-17 May, Honolulu, HI. Piscataway, NJ: IEEE Press, 831-836.
    • (2002) Congress on Evolutionary Computation (CEC'2002) , pp. 831-836
    • Abbass, H.1
  • 2
    • 77249120993 scopus 로고    scopus 로고
    • Discotic nematic liquid crystals: Science and technology
    • Bisoyi, H.K. and Kumar, S., 2010. Discotic nematic liquid crystals: science and technology. Chemical Society Reviews, 39 (1), 264-285.
    • (2010) Chemical Society Reviews , vol.39 , Issue.1 , pp. 264-285
    • Bisoyi, H.K.1    Kumar, S.2
  • 3
    • 65549131384 scopus 로고    scopus 로고
    • Constrained real-parameter optimization with e-self-adaptive differential evolution
    • E.Mezura-Montes, ed. Berlin: Springer
    • Brest, J., 2009. Constrained real-parameter optimization with e-self-adaptive differential evolution. In: E.Mezura-Montes, ed. Constrained-handling in evolutionary optimization. Berlin: Springer, 73-93.
    • (2009) Constrained-handling in Evolutionary Optimization , pp. 73-93
    • Brest, J.1
  • 4
    • 33847199831 scopus 로고    scopus 로고
    • Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    • Brest. J., et al., 2006. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 10 (6), 646-657.
    • (2006) IEEE Transactions on Evolutionary Computation , vol.10 , Issue.6 , pp. 646-657
    • Brest, J.1
  • 5
    • 78049290320 scopus 로고    scopus 로고
    • A 2-Opt based differential evolution for global optimization
    • Chiang, C.W., Lee,W.P., and Heh, J.S., 2010. A 2-Opt based differential evolution for global optimization. Applied Soft Computing, 10 (4), 1200-1207.
    • (2010) Applied Soft Computing , vol.10 , Issue.4 , pp. 1200-1207
    • Chiang, C.W.1    Lee, W.P.2    Heh, J.S.3
  • 6
    • 33644618843 scopus 로고    scopus 로고
    • Direct and inverse neural network modeling in free radical polymerization
    • Curteanu, S., 2004. Direct and inverse neural network modeling in free radical polymerization. Central European Journal of Chemistry, 2 (1), 113-140.
    • (2004) Central European Journal of Chemistry , vol.2 , Issue.1 , pp. 113-140
    • Curteanu, S.1
  • 8
    • 33645658008 scopus 로고    scopus 로고
    • Neural network based modeling for semi-batch and nonisothermal free radical polymerization
    • Curteanu, S. and Petrila, C., 2006. Neural network based modeling for semi-batch and nonisothermal free radical polymerization. International Journal of Quantum Chemistry, 106 (6), 1445-1456.
    • (2006) International Journal of Quantum Chemistry , vol.106 , Issue.6 , pp. 1445-1456
    • Curteanu, S.1    Petrila, C.2
  • 9
    • 33750268081 scopus 로고    scopus 로고
    • A survey on analysis and design of model-based fuzzy control system
    • Feng, G., 2006. A survey on analysis and design of model-based fuzzy control system. IEEE Transactions on Fuzzy Systems, 14 (5), 676-697.
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.5 , pp. 676-697
    • Feng, G.1
  • 11
    • 55349116293 scopus 로고    scopus 로고
    • Neuroevolution: From architectures to learning
    • Floreano, D., Durr, P., and Mattiuss, C., 2008. Neuroevolution: from architectures to learning. Evolutionary Intelligence, 1 (1), 47-62.
    • (2008) Evolutionary Intelligence , vol.1 , Issue.1 , pp. 47-62
    • Floreano, D.1    Durr, P.2    Mattiuss, C.3
  • 12
    • 78649889245 scopus 로고    scopus 로고
    • Optimization methodology applied to feed-forward artificial neural network parameters
    • Furtuna, R., Curteanu, S., and Cazacu, M., 2011. Optimization methodology applied to feed-forward artificial neural network parameters. International Journal of Quantum Chemistry, 111 (3), 539-553.
    • (2011) International Journal of Quantum Chemistry , vol.111 , Issue.3 , pp. 539-553
    • Furtuna, R.1    Curteanu, S.2    Cazacu, M.3
  • 13
    • 65449189643 scopus 로고    scopus 로고
    • An immune self-adaptive differential evolution algorithm with application to estimate kinetic parameters for homogeneous mercury oxidation
    • Hu, C. andYan, X., 2009. An immune self-adaptive differential evolution algorithm with application to estimate kinetic parameters for homogeneous mercury oxidation. Chinese Journal of Chemical Engineering, 17 (2), 232-240.
    • (2009) Chinese Journal of Chemical Engineering , vol.17 , Issue.2 , pp. 232-240
    • Hu, C.1    Yan, X.2
  • 14
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feed-forward neural networks
    • Ilonen, J., Kamarainen, J.K., and Lampinen, J., 2003. Differential evolution training algorithm for feed-forward neural networks. Neural Processing Letters, 17 (1), 93-105.
    • (2003) Neural Processing Letters , vol.17 , Issue.1 , pp. 93-105
    • Ilonen, J.1    Kamarainen, J.K.2    Lampinen, J.3
  • 15
    • 47149110859 scopus 로고    scopus 로고
    • Adaptive nonlinear control using input normalized neural networks
    • Leeghim, H., Seo, I.-H., and Bang, H., 2008. Adaptive nonlinear control using input normalized neural networks. Journal of Mechanical Science and Technology, 22 (6), 1073-1083.
    • (2008) Journal of Mechanical Science and Technology , vol.22 , Issue.6 , pp. 1073-1083
    • Leeghim, H.1    Seo, I.-H.2    Bang, H.3
  • 16
    • 77951198844 scopus 로고    scopus 로고
    • Prediction of the liquid-crystalline property using different classification methods
    • Leon, F., Lisa, C., and Curteanu, S., 2010. Prediction of the liquid-crystalline property using different classification methods. Molecular Crystals and Liquid Crystals, 518, 129-148.
    • (2010) Molecular Crystals and Liquid Crystals , vol.518 , pp. 129-148
    • Leon, F.1    Lisa, C.2    Curteanu, S.3
  • 17
    • 40949121562 scopus 로고    scopus 로고
    • Neural network based predictions for the liquid crystal properties of organic compounds
    • Lisa, C. and Curteanu, S., 2007. Neural network based predictions for the liquid crystal properties of organic compounds. Computer Aided Chemical Engineering, 24, 39-44.
    • (2007) Computer Aided Chemical Engineering , vol.24 , pp. 39-44
    • Lisa, C.1    Curteanu, S.2
  • 18
    • 77950187696 scopus 로고    scopus 로고
    • An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects
    • Lu,Y., et al., 2010. An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects. Expert Systems with Applications, 37 (7), 4842-4849.
    • (2010) Expert Systems with Applications , vol.37 , Issue.7 , pp. 4842-4849
    • Lu, Y.1
  • 19
    • 78650872465 scopus 로고    scopus 로고
    • Differential evolution algorithm with ensemble of parameters and mutation strategies
    • Mallipeddi, R., et al., 2011. Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing, 11 (2), 1679-1696.
    • (2011) Applied Soft Computing , vol.11 , Issue.2 , pp. 1679-1696
    • Mallipeddi, R.1
  • 21
    • 70450068893 scopus 로고    scopus 로고
    • MENNAG: A modular, regular and hierarchical encoding for neural-networks based on attribute grammars
    • Mouret, J.B. and Doncieux, S., 2008. MENNAG: a modular, regular and hierarchical encoding for neural-networks based on attribute grammars. Evolutionary Intelligence, 1 (3), 187-207.
    • (2008) Evolutionary Intelligence , vol.1 , Issue.3 , pp. 187-207
    • Mouret, J.B.1    Doncieux, S.2
  • 22
    • 78049448559 scopus 로고    scopus 로고
    • A differential evolution algorithm with self-adapting strategy and control parameters
    • Pan, Q.K., et al., 2011. A differential evolution algorithm with self-adapting strategy and control parameters. Computers & Operations Research, 38 (1), 394-408.
    • (2011) Computers & Operations Research , vol.38 , Issue.1 , pp. 394-408
    • Pan, Q.K.1
  • 23
    • 69949108386 scopus 로고    scopus 로고
    • Ten steps modelling of electrolysis processes by using neural networks
    • Piuleac, C.G., et al., 2010. Ten steps modelling of electrolysis processes by using neural networks. Environmental Modelling Software, 25 (1), 74-81.
    • (2010) Environmental Modelling Software , vol.25 , Issue.1 , pp. 74-81
    • Piuleac, C.G.1
  • 24
    • 79952448716 scopus 로고    scopus 로고
    • A survey on industrial applications of fuzzy control
    • Precup, R.E. and Hellendoorn, H., 2011. A survey on industrial applications of fuzzy control. Computers in Industry, 62 (3), 213-226.
    • (2011) Computers in Industry , vol.62 , Issue.3 , pp. 213-226
    • Precup, R.E.1    Hellendoorn, H.2
  • 26
    • 26944497186 scopus 로고    scopus 로고
    • Perspectives of fuzzy systems and control
    • Sala, A., Guerra, T.M., and Babuska, R., 2005. Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, 156 (3), 432-444.
    • (2005) Fuzzy Sets and Systems , vol.156 , Issue.3 , pp. 432-444
    • Sala, A.1    Guerra, T.M.2    Babuska, R.3
  • 27
    • 39049102386 scopus 로고    scopus 로고
    • A review of liquid crystal display technologies, electronic interconnection and failure analysis
    • Smith, C.A., 2008.A review of liquid crystal display technologies, electronic interconnection and failure analysis Circuit World, 34 (1), 35-41.
    • (2008) Circuit World , vol.34 , Issue.1 , pp. 35-41
    • Smith, C.A.1
  • 28
    • 51749108047 scopus 로고    scopus 로고
    • Differential evolution research: Trends and open questions
    • U.K. Chakraborty, ed. Berlin: Springer
    • Storn, R., 2008. Differential evolution research: trends and open questions. In: U.K. Chakraborty, ed. Advances in differential evolution. Berlin: Springer, 1-31.
    • (2008) Advances in Differential Evolution , pp. 1-31
    • Storn, R.1
  • 29
    • 65449160183 scopus 로고    scopus 로고
    • An improved differential evolution trained neural network scheme for nonlinear system identification
    • Subudhi, B. and Jena, D., 2009. An improved differential evolution trained neural network scheme for nonlinear system identification. International Journal of Automation and Computing, 6 (2), 137-144.
    • (2009) International Journal of Automation and Computing , vol.6 , Issue.2 , pp. 137-144
    • Subudhi, B.1    Jena, D.2
  • 30
    • 77953516054 scopus 로고    scopus 로고
    • Antiferroelectric liquid crystals: Interplay of simplicity and complexity
    • Takezoe, H., Gorecka, E., and Cepic, M., 2010. Antiferroelectric liquid crystals: interplay of simplicity and complexity. Reviews of Modern Physics, 82 (1), 897-937.
    • (2010) Reviews of Modern Physics , vol.82 , Issue.1 , pp. 897-937
    • Takezoe, H.1    Gorecka, E.2    Cepic, M.3
  • 31
    • 77949629753 scopus 로고    scopus 로고
    • A simple adaptive differential evolution algorithm
    • 9-11 December 2009 Coimbatore, India. Monterey, CA: IEEE Computer Society
    • Thangaraj, R., Pant, M., and Abraham, A., 2009. A simple adaptive differential evolution algorithm. In: World congress on nature and biologically inspired computing (NaBIC 2009), 9-11 December 2009 Coimbatore, India. Monterey, CA: IEEE Computer Society, 457-462.
    • (2009) World Congress on Nature and Biologically Inspired Computing (NaBIC 2009) , pp. 457-462
    • Thangaraj, R.1    Pant, M.2    Abraham, A.3
  • 33
    • 67349171026 scopus 로고    scopus 로고
    • Influence of crossover on the behavior of differential evolution algorithms
    • Zaharie, D., 2009. Influence of crossover on the behavior of differential evolution algorithms. Applied Soft Computing, 9 (3), 1126-1138.
    • (2009) Applied Soft Computing , vol.9 , Issue.3 , pp. 1126-1138
    • Zaharie, D.1
  • 34
    • 76649140509 scopus 로고    scopus 로고
    • Weighted data normalization based on eigenvalues for artificial neural network classification
    • Zhang, Q. and Sun, S., 2009.Weighted data normalization based on eigenvalues for artificial neural network classification. Neural Information Processing, 5863, 349-356.
    • (2009) Neural Information Processing , vol.5863 , pp. 349-356
    • Zhang, Q.1    Sun, S.2
  • 35
    • 77949569885 scopus 로고    scopus 로고
    • Dynamic multi-group self-adaptive differential evolution algorithm for reactive power optimization
    • Zhang, X., et al., 2010. Dynamic multi-group self-adaptive differential evolution algorithm for reactive power optimization. International Journal of Electrical Power & Energy Systems, 32 (5), 351-357.
    • (2010) International Journal of Electrical Power & Energy Systems , vol.32 , Issue.5 , pp. 351-357
    • Zhang, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.