-
1
-
-
0030884929
-
Human centromeric DNAs
-
Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC, (1997) Human centromeric DNAs. Hum Genet 100: 291-304.
-
(1997)
Hum Genet
, vol.100
, pp. 291-304
-
-
Lee, C.1
Wevrick, R.2
Fisher, R.B.3
Ferguson-Smith, M.A.4
Lin, C.C.5
-
2
-
-
3042794631
-
Building the centromere: from foundation proteins to 3D organization
-
Amor DJ, Kalitsis P, Sumer H, Choo KH, (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14: 359-368.
-
(2004)
Trends Cell Biol
, vol.14
, pp. 359-368
-
-
Amor, D.J.1
Kalitsis, P.2
Sumer, H.3
Choo, K.H.4
-
3
-
-
33750353597
-
Structural and functional dynamics of human centromeric chromatin
-
Schueler MG, Sullivan BA, (2006) Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet 7: 301-313.
-
(2006)
Annu Rev Genomics Hum Genet
, vol.7
, pp. 301-313
-
-
Schueler, M.G.1
Sullivan, B.A.2
-
4
-
-
33947279176
-
An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes
-
Black BE, Brock MA, Bedard S, Woods VLJ, Cleveland DW, (2007) An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc Natl Acad Sci USA 104: 5008-5013.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 5008-5013
-
-
Black, B.E.1
Brock, M.A.2
Bedard, S.3
Woods, V.L.J.4
Cleveland, D.W.5
-
5
-
-
33846199534
-
Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain
-
Black BE, Jansen LE, Maddox PS, Foltz DR, Desai AB, et al. (2007) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25: 309-322.
-
(2007)
Mol Cell
, vol.25
, pp. 309-322
-
-
Black, B.E.1
Jansen, L.E.2
Maddox, P.S.3
Foltz, D.R.4
Desai, A.B.5
-
6
-
-
77956897642
-
The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres
-
Sekulic N, Bassett EA, Rogers DJ, Black BE, (2010) The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres. Nature 467: 347-351.
-
(2010)
Nature
, vol.467
, pp. 347-351
-
-
Sekulic, N.1
Bassett, E.A.2
Rogers, D.J.3
Black, B.E.4
-
7
-
-
67650071132
-
A reader for centromeric chromatin
-
Sekulic N, Black BE, (2009) A reader for centromeric chromatin. Nat Cell Biol 11: 793-795.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 793-795
-
-
Sekulic, N.1
Black, B.E.2
-
8
-
-
0036200147
-
Conserved organization of centromeric chromatin in flies and humans
-
Blower MD, Sullivan BA, Karpen GH, (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2: 319-330.
-
(2002)
Dev Cell
, vol.2
, pp. 319-330
-
-
Blower, M.D.1
Sullivan, B.A.2
Karpen, G.H.3
-
9
-
-
0021989578
-
Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma
-
Earnshaw WC, Rothfield N, (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313-321.
-
(1985)
Chromosoma
, vol.91
, pp. 313-321
-
-
Earnshaw, W.C.1
Rothfield, N.2
-
10
-
-
0034703864
-
Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere-kinetochore complexes
-
Sugata N, Li S, Earnshaw WC, Yen TJ, Yoda K, et al. (2000) Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere-kinetochore complexes. Hum Mol Genet 9: 2919-2926.
-
(2000)
Hum Mol Genet
, vol.9
, pp. 2919-2926
-
-
Sugata, N.1
Li, S.2
Earnshaw, W.C.3
Yen, T.J.4
Yoda, K.5
-
11
-
-
0036230785
-
CENP-I is essential for centromere function in vertebrate cells
-
Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, et al. (2002) CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2: 463-476.
-
(2002)
Dev Cell
, vol.2
, pp. 463-476
-
-
Nishihashi, A.1
Haraguchi, T.2
Hiraoka, Y.3
Ikemura, T.4
Regnier, V.5
-
12
-
-
0037421189
-
Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway
-
Goshima G, Kiyomitsu T, Yoda K, Yanagida M, (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160: 25-39.
-
(2003)
J Cell Biol
, vol.160
, pp. 25-39
-
-
Goshima, G.1
Kiyomitsu, T.2
Yoda, K.3
Yanagida, M.4
-
14
-
-
33745004786
-
The human CENP-A centromeric nucleosome-associated complex
-
Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, et al. (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8: 458-469.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 458-469
-
-
Foltz, D.R.1
Jansen, L.E.2
Black, B.E.3
Bailey, A.O.4
Yates 3rd, J.R.5
-
15
-
-
33744970012
-
The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres
-
Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, et al. (2006) The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8: 446-457.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 446-457
-
-
Okada, M.1
Cheeseman, I.M.2
Hori, T.3
Okawa, K.4
McLeod, I.X.5
-
16
-
-
33744786043
-
Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins
-
Meraldi P, McAinsh AD, Rheinbay E, Sorger PK, (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7: R23.
-
(2006)
Genome Biol
, vol.7
-
-
Meraldi, P.1
McAinsh, A.D.2
Rheinbay, E.3
Sorger, P.K.4
-
17
-
-
37149019996
-
The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity
-
McClelland SE, Borusu S, Amaro AC, Winter JR, Belwal M, et al. (2007) The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity. EMBO J 26: 5033-5047.
-
(2007)
EMBO J
, vol.26
, pp. 5033-5047
-
-
McClelland, S.E.1
Borusu, S.2
Amaro, A.C.3
Winter, J.R.4
Belwal, M.5
-
18
-
-
41649109022
-
CENP-O class proteins form a stable complex and are required for proper kinetochore function
-
Hori T, Okada M, Maenaka K, Fukagawa T, (2008) CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol Biol Cell 19: 843-854.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 843-854
-
-
Hori, T.1
Okada, M.2
Maenaka, K.3
Fukagawa, T.4
-
19
-
-
57149129148
-
CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore
-
Hori T, Amano M, Suzuki A, Backer CB, Welburn JP, et al. (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135: 1039-1052.
-
(2008)
Cell
, vol.135
, pp. 1039-1052
-
-
Hori, T.1
Amano, M.2
Suzuki, A.3
Backer, C.B.4
Welburn, J.P.5
-
20
-
-
67749147135
-
The CENP-S complex is essential for the stable assembly of outer kinetochore structure
-
Amano M, Suzuki A, Hori T, Backer C, Okawa K, et al. (2009) The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 186: 173-182.
-
(2009)
J Cell Biol
, vol.186
, pp. 173-182
-
-
Amano, M.1
Suzuki, A.2
Hori, T.3
Backer, C.4
Okawa, K.5
-
21
-
-
84863393544
-
Dynamics of CENP-N kinetochore binding during the cell cycle
-
Hellwig D, Emmerth S, Ulbricht T, Döring V, Hoischen C, et al. (2011) Dynamics of CENP-N kinetochore binding during the cell cycle. J Cell Sci 124: 3871-3883.
-
(2011)
J Cell Sci
, vol.124
, pp. 3871-3883
-
-
Hellwig, D.1
Emmerth, S.2
Ulbricht, T.3
Döring, V.4
Hoischen, C.5
-
22
-
-
82755192843
-
The CCAN complex: Linking centromere specification to control of kinetochore-microtubule dynamics
-
McAinsh AD, Meraldi P, (2011) The CCAN complex: Linking centromere specification to control of kinetochore-microtubule dynamics. Semin Cell Dev Biol 22: 946-952.
-
(2011)
Semin Cell Dev Biol
, vol.22
, pp. 946-952
-
-
McAinsh, A.D.1
Meraldi, P.2
-
23
-
-
4444241998
-
A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension
-
Cheeseman IM, Niessen S, Anderson S, Hyndman F, Yates JR, et al. (2004) A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Gene Dev 18: 2255-2268.
-
(2004)
Gene Dev
, vol.18
, pp. 2255-2268
-
-
Cheeseman, I.M.1
Niessen, S.2
Anderson, S.3
Hyndman, F.4
Yates, J.R.5
-
24
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A, (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127: 983-997.
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
Chappie, J.S.2
Wilson-Kubalek, E.M.3
Desai, A.4
-
25
-
-
0030832408
-
Experimental investigation of herpes simplex virus latency
-
Wagner EK, Bloom DC, (1997) Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10: 419-43.
-
(1997)
Clin Microbiol Rev
, vol.10
, pp. 419-443
-
-
Wagner, E.K.1
Bloom, D.C.2
-
26
-
-
0035100854
-
ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency
-
Halford WP, Schaffer PA, (2001) ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency. J Virol 75: 3240-9.
-
(2001)
J Virol
, vol.75
, pp. 3240-3249
-
-
Halford, W.P.1
Schaffer, P.A.2
-
27
-
-
33750700856
-
Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo
-
Thompson RL, Sawtell NM, (2006) Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 80: 10919-10930.
-
(2006)
J Virol
, vol.80
, pp. 10919-10930
-
-
Thompson, R.L.1
Sawtell, N.M.2
-
28
-
-
63449116249
-
De novo synthesis of VP16 coordinates the exit from HSV latency in vivo
-
Thompson RL, Preston CM, Sawtell NM, (2009) De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathog 5: e1000352.
-
(2009)
PLoS Pathog
, vol.5
-
-
Thompson, R.L.1
Preston, C.M.2
Sawtell, N.M.3
-
29
-
-
0028039189
-
HSV-1 IE protein Vmw110 causes redistribution of PML
-
Everett RD, Maul GG, (1994) HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO J 13: 5062-5069.
-
(1994)
EMBO J
, vol.13
, pp. 5062-5069
-
-
Everett, R.D.1
Maul, G.G.2
-
30
-
-
0033559253
-
Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110
-
Everett RD, Earnshaw WC, Findlay J, Lomonte P, (1999) Specific destruction of kinetochore protein CENP-C and disruption of cell division by herpes simplex virus immediate-early protein Vmw110. EMBO J 18: 1526-38.
-
(1999)
EMBO J
, vol.18
, pp. 1526-1538
-
-
Everett, R.D.1
Earnshaw, W.C.2
Findlay, J.3
Lomonte, P.4
-
31
-
-
26844483014
-
The protein ICP0 of herpes simplex virus type 1 is targeted to nucleoli of infected cells. Brief report
-
Morency E, Coute Y, Thomas J, Texier P, Lomonte P, (2005) The protein ICP0 of herpes simplex virus type 1 is targeted to nucleoli of infected cells. Brief report. Arch Virol 150: 2387-2395.
-
(2005)
Arch Virol
, vol.150
, pp. 2387-2395
-
-
Morency, E.1
Coute, Y.2
Thomas, J.3
Texier, P.4
Lomonte, P.5
-
32
-
-
0036138854
-
Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro
-
Boutell C, Sadis S, Everett RD, (2002) Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76: 841-50.
-
(2002)
J Virol
, vol.76
, pp. 841-850
-
-
Boutell, C.1
Sadis, S.2
Everett, R.D.3
-
33
-
-
0042709466
-
PML residue lysine 160 is required for the degradation of PML induced by herpes simplex virus type 1 regulatory protein ICP0
-
Boutell C, Orr A, Everett RD, (2003) PML residue lysine 160 is required for the degradation of PML induced by herpes simplex virus type 1 regulatory protein ICP0. J Virol 77: 8686-8694.
-
(2003)
J Virol
, vol.77
, pp. 8686-8694
-
-
Boutell, C.1
Orr, A.2
Everett, R.D.3
-
34
-
-
0141704201
-
The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53
-
Boutell C, Everett RD, (2003) The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and Ubiquitinates p53. J Biol Chem 278: 36596-36602.
-
(2003)
J Biol Chem
, vol.278
, pp. 36596-36602
-
-
Boutell, C.1
Everett, R.D.2
-
35
-
-
4644352805
-
A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7
-
Canning M, Boutell C, Parkinson J, Everett RD, (2004) A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J Biol Chem 279: 38160-38168.
-
(2004)
J Biol Chem
, vol.279
, pp. 38160-38168
-
-
Canning, M.1
Boutell, C.2
Parkinson, J.3
Everett, R.D.4
-
36
-
-
25144467949
-
Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7
-
Boutell C, Canning M, Orr A, Everett RD, (2005) Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol 79: 12342-12354.
-
(2005)
J Virol
, vol.79
, pp. 12342-12354
-
-
Boutell, C.1
Canning, M.2
Orr, A.3
Everett, R.D.4
-
37
-
-
1242342140
-
Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1
-
Hagglund R, Roizman B, (2004) Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78: 2169-2178.
-
(2004)
J Virol
, vol.78
, pp. 2169-2178
-
-
Hagglund, R.1
Roizman, B.2
-
38
-
-
0032889431
-
Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA- dependent protein kinase
-
Parkinson J, Lees-Miller SP, Everett RD, (1999) Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA- dependent protein kinase. J Virol 73: 650-7.
-
(1999)
J Virol
, vol.73
, pp. 650-657
-
-
Parkinson, J.1
Lees-Miller, S.P.2
Everett, R.D.3
-
39
-
-
0031878851
-
The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms
-
Everett RD, Freemont P, Saitoh H, Dasso M, Orr A, et al. (1998) The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72: 6581-91.
-
(1998)
J Virol
, vol.72
, pp. 6581-6591
-
-
Everett, R.D.1
Freemont, P.2
Saitoh, H.3
Dasso, M.4
Orr, A.5
-
40
-
-
0033611590
-
Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins
-
Chelbi-Alix MK, de The H, (1999) Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 18: 935-941.
-
(1999)
Oncogene
, vol.18
, pp. 935-941
-
-
Chelbi-Alix, M.K.1
de The, H.2
-
41
-
-
0035937114
-
Degradation of Nucleosome-associated Centromeric Histone H3-like Protein CENP-A Induced by Herpes Simplex Virus Type 1 Protein ICP0
-
Lomonte P, Sullivan KF, Everett RD, (2000) Degradation of Nucleosome-associated Centromeric Histone H3-like Protein CENP-A Induced by Herpes Simplex Virus Type 1 Protein ICP0. J Biol Chem 276: 5829-5835.
-
(2000)
J Biol Chem
, vol.276
, pp. 5829-5835
-
-
Lomonte, P.1
Sullivan, K.F.2
Everett, R.D.3
-
42
-
-
33846881608
-
Centromeric protein CENP-B proteasomal degradation induced by the viral protein ICP0
-
LOMONTE P, Morency E, (2007) Centromeric protein CENP-B proteasomal degradation induced by the viral protein ICP0. FEBS Lett 581: 658-662.
-
(2007)
FEBS Lett
, vol.581
, pp. 658-662
-
-
Lomonte, P.1
Morency, E.2
-
43
-
-
34249945686
-
Herpes simplex virus type 1 induces CD83 degradation in mature dendritic cells with immediate-early kinetics via the cellular proteasome
-
Kummer M, Turza NM, Muhl-Zurbes P, Lechmann M, Boutell C, et al. (2007) Herpes simplex virus type 1 induces CD83 degradation in mature dendritic cells with immediate-early kinetics via the cellular proteasome. J Virol 81: 6326-6338.
-
(2007)
J Virol
, vol.81
, pp. 6326-6338
-
-
Kummer, M.1
Turza, N.M.2
Muhl-Zurbes, P.3
Lechmann, M.4
Boutell, C.5
-
44
-
-
77649338569
-
A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses
-
Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, et al. (2010) A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 29: 943-955.
-
(2010)
EMBO J
, vol.29
, pp. 943-955
-
-
Lilley, C.E.1
Chaurushiya, M.S.2
Boutell, C.3
Landry, S.4
Suh, J.5
-
45
-
-
80053459914
-
A Viral Ubiquitin Ligase Has Substrate Preferential SUMO Targeted Ubiquitin Ligase Activity that Counteracts Intrinsic Antiviral Defence
-
Boutell C, Cuchet-Lourenço D, Vanni E, Orr A, Glass M, et al. (2011) A Viral Ubiquitin Ligase Has Substrate Preferential SUMO Targeted Ubiquitin Ligase Activity that Counteracts Intrinsic Antiviral Defence. PLoS Pathog 7: e1002245.
-
(2011)
PLoS Pathog
, vol.7
-
-
Boutell, C.1
Cuchet-Lourenço, D.2
Vanni, E.3
Orr, A.4
Glass, M.5
-
46
-
-
0032863957
-
Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle
-
Lomonte P, Everett RD, (1999) Herpes simplex virus type 1 immediate-early protein Vmw110 inhibits progression of cells through mitosis and from G(1) into S phase of the cell cycle. J Virol 73: 9456-67.
-
(1999)
J Virol
, vol.73
, pp. 9456-9467
-
-
Lomonte, P.1
Everett, R.D.2
-
47
-
-
34249869815
-
A novel cell response triggered by interphase centromere structural instability
-
Morency E, Sabra M, Catez F, Texier P, Lomonte P, (2007) A novel cell response triggered by interphase centromere structural instability. J Cell Biol 177: 757-768.
-
(2007)
J Cell Biol
, vol.177
, pp. 757-768
-
-
Morency, E.1
Sabra, M.2
Catez, F.3
Texier, P.4
Lomonte, P.5
-
48
-
-
0034282098
-
Annexation of the interchromosomal space during viral infection
-
Monier K, Armas JC, Etteldorf S, Ghazal P, Sullivan KF, (2000) Annexation of the interchromosomal space during viral infection. Nat Cell Biol 2: 661-665.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 661-665
-
-
Monier, K.1
Armas, J.C.2
Etteldorf, S.3
Ghazal, P.4
Sullivan, K.F.5
-
49
-
-
50149120525
-
Linker histones are mobilized during infection with herpes simplex virus type 1
-
Conn KL, Hendzel MJ, Schang LM, (2008) Linker histones are mobilized during infection with herpes simplex virus type 1. J Virol 82: 8629-8646.
-
(2008)
J Virol
, vol.82
, pp. 8629-8646
-
-
Conn, K.L.1
Hendzel, M.J.2
Schang, L.M.3
-
50
-
-
84855852677
-
Core histones H2B and H4 are mobilized during infection with herpes simplex virus 1
-
Conn KL, Hendzel MJ, Schang LM, (2011) Core histones H2B and H4 are mobilized during infection with herpes simplex virus 1. J Virol 85: 13234-13252.
-
(2011)
J Virol
, vol.85
, pp. 13234-13252
-
-
Conn, K.L.1
Hendzel, M.J.2
Schang, L.M.3
-
51
-
-
4143099308
-
Mouse centric and pericentric satellite repeats form distinct functional heterochromatin
-
Guenatri M, Bailly D, Maison C, Almouzni G, (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166: 493-505.
-
(2004)
J Cell Biol
, vol.166
, pp. 493-505
-
-
Guenatri, M.1
Bailly, D.2
Maison, C.3
Almouzni, G.4
-
52
-
-
0142137127
-
Formation of facultative heterochromatin in the absence of HP1
-
Gilbert N, Boyle S, Sutherland H, Las Heras de J, Allan J, et al. (2003) Formation of facultative heterochromatin in the absence of HP1. EMBO J 22: 5540-5550.
-
(2003)
EMBO J
, vol.22
, pp. 5540-5550
-
-
Gilbert, N.1
Boyle, S.2
Sutherland, H.3
de Las Heras, J.4
Allan, J.5
-
53
-
-
16644389418
-
The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres
-
Masumoto H, Nakano M, Ohzeki J, (2004) The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12: 543-556.
-
(2004)
Chromosome Res
, vol.12
, pp. 543-556
-
-
Masumoto, H.1
Nakano, M.2
Ohzeki, J.3
-
54
-
-
78751636707
-
Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore
-
Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, et al. (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30: 328-340.
-
(2011)
EMBO J
, vol.30
, pp. 328-340
-
-
Bergmann, J.H.1
Rodriguez, M.G.2
Martins, N.M.3
Kimura, H.4
Kelly, D.A.5
-
55
-
-
41849114919
-
Inactivation of a human kinetochore by specific targeting of chromatin modifiers
-
Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, et al. (2008) Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell 14: 507-522.
-
(2008)
Dev Cell
, vol.14
, pp. 507-522
-
-
Nakano, M.1
Cardinale, S.2
Noskov, V.N.3
Gassmann, R.4
Vagnarelli, P.5
-
56
-
-
37449015481
-
CENP-B Controls Centromere Formation Depending on the Chromatin Context
-
Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley WR, et al. (2007) CENP-B Controls Centromere Formation Depending on the Chromatin Context. Cell 131: 1287-1300.
-
(2007)
Cell
, vol.131
, pp. 1287-1300
-
-
Okada, T.1
Ohzeki, J.2
Nakano, M.3
Yoda, K.4
Brinkley, W.R.5
-
57
-
-
33645236868
-
Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA
-
Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA, (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA 103: 4186-4191.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 4186-4191
-
-
Lam, A.L.1
Boivin, C.D.2
Bonney, C.F.3
Rudd, M.K.4
Sullivan, B.A.5
-
58
-
-
79955539577
-
Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes
-
Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, et al. (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145: 410-422.
-
(2011)
Cell
, vol.145
, pp. 410-422
-
-
Gascoigne, K.E.1
Takeuchi, K.2
Suzuki, A.3
Hori, T.4
Fukagawa, T.5
-
59
-
-
79952360863
-
CENP-C Is a Structural Platform for Kinetochore Assembly
-
Przewloka MR, Venkei Z, Bolanos-Garcia VM, Debski J, Dadlez M, et al. (2011) CENP-C Is a Structural Platform for Kinetochore Assembly. Curr Biol 21: 399-405.
-
(2011)
Curr Biol
, vol.21
, pp. 399-405
-
-
Przewloka, M.R.1
Venkei, Z.2
Bolanos-Garcia, V.M.3
Debski, J.4
Dadlez, M.5
-
60
-
-
67149128090
-
The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation
-
Trazzi S, Perini G, Bernardoni R, Zoli M, Reese JC, et al. (2009) The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation. PloS One 4: e5832.
-
(2009)
PloS One
, vol.4
-
-
Trazzi, S.1
Perini, G.2
Bernardoni, R.3
Zoli, M.4
Reese, J.C.5
-
61
-
-
67149142163
-
Live-cell imaging reveals sustained centromere binding of CENP-T via CENP-A and CENP-B
-
Hellwig D, Munch S, Orthaus S, Hoischen C, Hemmerich P, et al. (2008) Live-cell imaging reveals sustained centromere binding of CENP-T via CENP-A and CENP-B. J Biophotonics 1: 245-254.
-
(2008)
J Biophotonics
, vol.1
, pp. 245-254
-
-
Hellwig, D.1
Munch, S.2
Orthaus, S.3
Hoischen, C.4
Hemmerich, P.5
-
62
-
-
67650065426
-
Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N
-
Carroll CW, Silva MC, Godek KM, Jansen LE, Straight AF, (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11: 896-902.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 896-902
-
-
Carroll, C.W.1
Silva, M.C.2
Godek, K.M.3
Jansen, L.E.4
Straight, A.F.5
-
63
-
-
77954396194
-
Dual recognition of CENP-A nucleosomes is required for centromere assembly
-
Carroll CW, Milks KJ, Straight AF, (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189: 1143-1155.
-
(2010)
J Cell Biol
, vol.189
, pp. 1143-1155
-
-
Carroll, C.W.1
Milks, K.J.2
Straight, A.F.3
-
64
-
-
0028077549
-
Human centromere protein C (CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif
-
Sugimoto K, Yata H, Muro Y, Himeno M, (1994) Human centromere protein C (CENP-C) is a DNA-binding protein which possesses a novel DNA-binding motif. J Biochem (Tokyo) 116: 877-881.
-
(1994)
J Biochem (Tokyo)
, vol.116
, pp. 877-881
-
-
Sugimoto, K.1
Yata, H.2
Muro, Y.3
Himeno, M.4
-
65
-
-
0036591963
-
CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains
-
Politi V, Perini G, Trazzi S, Pliss A, Raska I, et al. (2002) CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J Cell Sci 115: 2317-2327.
-
(2002)
J Cell Sci
, vol.115
, pp. 2317-2327
-
-
Politi, V.1
Perini, G.2
Trazzi, S.3
Pliss, A.4
Raska, I.5
-
66
-
-
77649202581
-
DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA
-
Du Y, Topp CN, Dawe RK, (2010) DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet 6: e1000835.
-
(2010)
PLoS Genet
, vol.6
-
-
Du, Y.1
Topp, C.N.2
Dawe, R.K.3
-
67
-
-
0024442796
-
A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite
-
Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T, (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109: 1963-1973.
-
(1989)
J Cell Biol
, vol.109
, pp. 1963-1973
-
-
Masumoto, H.1
Masukata, H.2
Muro, Y.3
Nozaki, N.4
Okazaki, T.5
-
68
-
-
0027093270
-
A human centromere protein, CENP-B, has a DNA binding domain containing four potential alpha helices at the NH2 terminus, which is separable from dimerizing activity
-
Yoda K, Kitagawa K, Masumoto H, Muro Y, Okazaki T, (1992) A human centromere protein, CENP-B, has a DNA binding domain containing four potential alpha helices at the NH2 terminus, which is separable from dimerizing activity. J Cell Biol 119: 1413-1427.
-
(1992)
J Cell Biol
, vol.119
, pp. 1413-1427
-
-
Yoda, K.1
Kitagawa, K.2
Masumoto, H.3
Muro, Y.4
Okazaki, T.5
-
69
-
-
0023275058
-
A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones
-
Palmer DK, O'Day K, Wener MH, Andrews BS, Margolis RL, (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104: 805-815.
-
(1987)
J Cell Biol
, vol.104
, pp. 805-815
-
-
Palmer, D.K.1
O'Day, K.2
Wener, M.H.3
Andrews, B.S.4
Margolis, R.L.5
-
70
-
-
0028104174
-
Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere
-
Sullivan KF, Hechenberger M, Masri K, (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127: 581-592.
-
(1994)
J Cell Biol
, vol.127
, pp. 581-592
-
-
Sullivan, K.F.1
Hechenberger, M.2
Masri, K.3
-
71
-
-
29244481979
-
Human centromere protein B induces translational positioning of nucleosomes on alpha-satellite sequences
-
Tanaka Y, Tachiwana H, Yoda K, Masumoto H, Okazaki T, et al. (2005) Human centromere protein B induces translational positioning of nucleosomes on alpha-satellite sequences. J Biol Chem 280: 41609-41618.
-
(2005)
J Biol Chem
, vol.280
, pp. 41609-41618
-
-
Tanaka, Y.1
Tachiwana, H.2
Yoda, K.3
Masumoto, H.4
Okazaki, T.5
-
72
-
-
0031720004
-
In vitro assembly of the CENP-B/alpha-satellite DNA/core histone complex: CENP-B causes nucleosome positioning
-
Yoda K, Ando S, Okuda A, Kikuchi A, Okazaki T, (1998) In vitro assembly of the CENP-B/alpha-satellite DNA/core histone complex: CENP-B causes nucleosome positioning. Genes Cells 3: 533-548.
-
(1998)
Genes Cells
, vol.3
, pp. 533-548
-
-
Yoda, K.1
Ando, S.2
Okuda, A.3
Kikuchi, A.4
Okazaki, T.5
-
73
-
-
0033779805
-
Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins
-
Parkinson J, Everett RD, (2000) Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74: 10006-10017.
-
(2000)
J Virol
, vol.74
, pp. 10006-10017
-
-
Parkinson, J.1
Everett, R.D.2
-
74
-
-
0031847605
-
Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death
-
Pluta AF, Earnshaw WC, Goldberg IG, (1998) Interphase-specific association of intrinsic centromere protein CENP-C with HDaxx, a death domain-binding protein implicated in Fas-mediated cell death. J Cell Sci 111 (Pt 14): 2029-2041.
-
(1998)
J Cell Sci
, vol.111
, Issue.Pt 14
, pp. 2029-2041
-
-
Pluta, A.F.1
Earnshaw, W.C.2
Goldberg, I.G.3
-
75
-
-
0033975074
-
Roscovitine, a specific inhibitor of cellular cyclin-dependent kinases, inhibits herpes simplex virus DNA synthesis in the presence of viral early proteins
-
Schang LM, Rosenberg A, Schaffer PA, (2000) Roscovitine, a specific inhibitor of cellular cyclin-dependent kinases, inhibits herpes simplex virus DNA synthesis in the presence of viral early proteins. J Virol 74: 2107-2120.
-
(2000)
J Virol
, vol.74
, pp. 2107-2120
-
-
Schang, L.M.1
Rosenberg, A.2
Schaffer, P.A.3
-
76
-
-
0033964244
-
Repression of viral transcription during herpes simplex virus latency
-
Preston CM, (2000) Repression of viral transcription during herpes simplex virus latency. J Gen Virol 81 (Pt 1): 1-19.
-
(2000)
J Gen Virol
, vol.81
, Issue.Pt 1
, pp. 1-19
-
-
Preston, C.M.1
-
78
-
-
84866174976
-
HSV-1 Genome Subnuclear Positioning and Associations with Host-Cell PML-NBs and Centromeres Regulate LAT Locus Transcription during Latency in Neurons
-
Catez F, Picard C, Held K, Gross S, Rousseau A, et al. (2012) HSV-1 Genome Subnuclear Positioning and Associations with Host-Cell PML-NBs and Centromeres Regulate LAT Locus Transcription during Latency in Neurons. PLoS Pathog 8 (8): e1002852.
-
(2012)
PLoS Pathog
, vol.8
, Issue.8
-
-
Catez, F.1
Picard, C.2
Held, K.3
Gross, S.4
Rousseau, A.5
-
79
-
-
0033615636
-
A functional enhancer suppresses silencing of a transgene and prevents its localization close to centrometric heterochromatin
-
Francastel C, Walters MC, Groudine M, Martin DI, (1999) A functional enhancer suppresses silencing of a transgene and prevents its localization close to centrometric heterochromatin. Cell 99: 259-269.
-
(1999)
Cell
, vol.99
, pp. 259-269
-
-
Francastel, C.1
Walters, M.C.2
Groudine, M.3
Martin, D.I.4
-
80
-
-
0035834009
-
Nuclear relocation of a transactivator subunit precedes target gene activation
-
Francastel C, Magis W, Groudine M, (2001) Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci USA 98: 12120-12125.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 12120-12125
-
-
Francastel, C.1
Magis, W.2
Groudine, M.3
-
81
-
-
0031437119
-
Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin
-
Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, et al. (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91: 845-854.
-
(1997)
Cell
, vol.91
, pp. 845-854
-
-
Brown, K.E.1
Guest, S.S.2
Smale, S.T.3
Hahm, K.4
Merkenschlager, M.5
-
82
-
-
0033083793
-
Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division
-
Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG, (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3: 207-217.
-
(1999)
Mol Cell
, vol.3
, pp. 207-217
-
-
Brown, K.E.1
Baxter, J.2
Graf, D.3
Merkenschlager, M.4
Fisher, A.G.5
-
83
-
-
0242439142
-
Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus
-
Schubeler D, Francastel C, Cimbora DM, Reik A, Martin DI, et al. (2000) Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Gene Dev 14: 940-950.
-
(2000)
Gene Dev
, vol.14
, pp. 940-950
-
-
Schubeler, D.1
Francastel, C.2
Cimbora, D.M.3
Reik, A.4
Martin, D.I.5
-
84
-
-
0034976421
-
Expression of alpha- and beta-globin genes occurs within different nuclear domains in haemopoietic cells
-
Brown KE, Amoils S, Horn JM, Buckle VJ, Higgs DR, et al. (2001) Expression of alpha- and beta-globin genes occurs within different nuclear domains in haemopoietic cells. Nat Cell Biol 3: 602-606.
-
(2001)
Nat Cell Biol
, vol.3
, pp. 602-606
-
-
Brown, K.E.1
Amoils, S.2
Horn, J.M.3
Buckle, V.J.4
Higgs, D.R.5
-
85
-
-
26844560213
-
The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity
-
Terranova R, Sauer S, Merkenschlager M, Fisher AG, (2005) The reorganisation of constitutive heterochromatin in differentiating muscle requires HDAC activity. Exp Cell Res 310: 344-356.
-
(2005)
Exp Cell Res
, vol.310
, pp. 344-356
-
-
Terranova, R.1
Sauer, S.2
Merkenschlager, M.3
Fisher, A.G.4
-
86
-
-
78449247107
-
Preferential association of irreversibly silenced E2F-target genes with pericentromeric heterochromatin in differentiated muscle cells
-
Guasconi V, Pritchard L-L, Fritsch L, Mesner LD, Francastel C, et al. (2010) Preferential association of irreversibly silenced E2F-target genes with pericentromeric heterochromatin in differentiated muscle cells. Epigenetics 5: 704-709.
-
(2010)
Epigenetics
, vol.5
, pp. 704-709
-
-
Guasconi, V.1
Pritchard, L.-L.2
Fritsch, L.3
Mesner, L.D.4
Francastel, C.5
-
87
-
-
0034330420
-
Nuclear compartmentalization and gene activity
-
Francastel C, Schubeler D, Martin DI, Groudine M, (2000) Nuclear compartmentalization and gene activity. Nature Rev Mol Biol 1: 137-143.
-
(2000)
Nature Rev Mol Biol
, vol.1
, pp. 137-143
-
-
Francastel, C.1
Schubeler, D.2
Martin, D.I.3
Groudine, M.4
-
88
-
-
0036519296
-
Haematopoietic cell-fate decisions, chromatin regulation and ikaros
-
Georgopoulos K, (2002) Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol 2: 162-174.
-
(2002)
Nat Rev Immunol
, vol.2
, pp. 162-174
-
-
Georgopoulos, K.1
-
89
-
-
0036532237
-
Gene silencing, cell fate and nuclear organisation
-
Fisher AG, Merkenschlager M, (2002) Gene silencing, cell fate and nuclear organisation. Curr Opin Genet Dev 12: 193-197.
-
(2002)
Curr Opin Genet Dev
, vol.12
, pp. 193-197
-
-
Fisher, A.G.1
Merkenschlager, M.2
-
90
-
-
0037049465
-
CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA
-
Ohzeki J, Nakano M, Okada T, Masumoto H, (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159: 765-775.
-
(2002)
J Cell Biol
, vol.159
, pp. 765-775
-
-
Ohzeki, J.1
Nakano, M.2
Okada, T.3
Masumoto, H.4
-
91
-
-
0027491934
-
A truncated form of herpes simplex virus type 1 immediate-early protein Vmw110 is expressed in a cell type dependent manner
-
Everett RD, Cross A, Orr A, (1993) A truncated form of herpes simplex virus type 1 immediate-early protein Vmw110 is expressed in a cell type dependent manner. Virology 197: 751-6.
-
(1993)
Virology
, vol.197
, pp. 751-756
-
-
Everett, R.D.1
Cross, A.2
Orr, A.3
-
92
-
-
0022978685
-
Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110
-
Stow ND, Stow EC, (1986) Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110. J Gen Virol 67: 2571-85.
-
(1986)
J Gen Virol
, vol.67
, pp. 2571-2585
-
-
Stow, N.D.1
Stow, E.C.2
-
93
-
-
0027980680
-
Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21
-
Ikeno M, Masumoto H, Okazaki T, (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. Hum Mol Genet 3: 1245-1257.
-
(1994)
Hum Mol Genet
, vol.3
, pp. 1245-1257
-
-
Ikeno, M.1
Masumoto, H.2
Okazaki, T.3
-
94
-
-
0036349409
-
Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH)
-
Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, et al. (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276: 10-23.
-
(2002)
Exp Cell Res
, vol.276
, pp. 10-23
-
-
Solovei, I.1
Cavallo, A.2
Schermelleh, L.3
Jaunin, F.4
Scasselati, C.5
|