메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2634-2641

Multi-output Laplacian dynamic ordinal regression for facial expression recognition and intensity estimation

Author keywords

[No Author keywords available]

Indexed keywords

BINARY CLASSIFIERS; DYNAMIC RECOGNITION; FACIAL EXPRESSION RECOGNITION; FACIAL EXPRESSIONS; INTENSITY ESTIMATION; LAPLACIANS; MULTI-CLASS; MULTI-OUTPUT; ORDINAL REGRESSION; RANDOM FIELDS; TEMPORAL EVOLUTION;

EID: 84866674821     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247983     Document Type: Conference Paper
Times cited : (92)

References (26)
  • 1
    • 19844377516 scopus 로고    scopus 로고
    • Deciphering the enigmatic face: The importance of facial dynamics to interpreting subtle facial expressions
    • 1
    • Z. Ambadar, J. Schooler, and J. Cohn. Deciphering the enigmatic face: The importance of facial dynamics to interpreting subtle facial expressions. Psychological Science, 16(5):403-410, 2005. 1
    • (2005) Psychological Science , vol.16 , Issue.5 , pp. 403-410
    • Ambadar, Z.1    Schooler, J.2    Cohn, J.3
  • 2
    • 11944264057 scopus 로고
    • Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis
    • 1
    • N. Ambady and R. Rosenthal. Thin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysis. Psychological Bulletin, 111:256-274, 1992. 1
    • (1992) Psychological Bulletin , vol.111 , pp. 256-274
    • Ambady, N.1    Rosenthal, R.2
  • 3
    • 21844453228 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • 2
    • W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. JMLR, 6:1019-1041, 2005. 2
    • (2005) JMLR , vol.6 , pp. 1019-1041
    • Chu, W.1    Ghahramani, Z.2
  • 5
    • 67650691774 scopus 로고    scopus 로고
    • Automatic estimation of the dynamics of facial expression using a three-level model of intensity
    • 1
    • J. Delannoy and J. McDonald. Automatic estimation of the dynamics of facial expression using a three-level model of intensity. FG, pages 1-6, 2008. 1
    • (2008) FG , pp. 1-6
    • Delannoy, J.1    McDonald, J.2
  • 6
    • 35148853495 scopus 로고    scopus 로고
    • Real time 3d face and facial feature tracking
    • 5, 7
    • F. Dornaika and J. Orozco. Real time 3d face and facial feature tracking. J. Real-Time Image Processing, pages 35-44, 2007. 5, 7
    • (2007) J. Real-Time Image Processing , pp. 35-44
    • Dornaika, F.1    Orozco, J.2
  • 7
    • 61549119152 scopus 로고    scopus 로고
    • Automatic temporal segment detection and affect recognition from face and body display
    • 1
    • H. Gunes and M. Piccardi. Automatic temporal segment detection and affect recognition from face and body display. IEEE Trans. on Systems, Man, and Cybernetics, 39(1):64-84, 2009. 1
    • (2009) IEEE Trans. on Systems, Man, and Cybernetics , vol.39 , Issue.1 , pp. 64-84
    • Gunes, H.1    Piccardi, M.2
  • 8
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • 3
    • X. He and P. Niyogi. Locality Preserving Projections. NIPS, 2004. 3
    • (2004) NIPS
    • He, X.1    Niyogi, P.2
  • 9
    • 78049412316 scopus 로고    scopus 로고
    • Hidden conditional ordinal random fields for sequence classification
    • 1, 2, 3, 4, 5, 6, 7
    • M. Kim and V. Pavlovic. Hidden conditional ordinal random fields for sequence classification. Machine Learning and Knowledge Discovery in Databases, 6322:51-65, 2010. 1, 2, 3, 4, 5, 6, 7
    • (2010) Machine Learning and Knowledge Discovery in Databases , vol.6322 , pp. 51-65
    • Kim, M.1    Pavlovic, V.2
  • 10
    • 78149312745 scopus 로고    scopus 로고
    • Structured output ordinal regression for dynamic facial emotion intensity prediction
    • 1, 2
    • M. Kim and V. Pavlovic. Structured output ordinal regression for dynamic facial emotion intensity prediction. ECCV, pages 649-662, 2010. 1, 2
    • (2010) ECCV , pp. 649-662
    • Kim, M.1    Pavlovic, V.2
  • 11
    • 78149285836 scopus 로고    scopus 로고
    • A dynamic texture based approach to recognition of facial actions and their temporal models
    • 1
    • S. Koelstra, M. Pantic, and I. Patras. A dynamic texture based approach to recognition of facial actions and their temporal models. IEEE PAMI, 32:1940-1954, 2010. 1
    • (2010) IEEE PAMI , vol.32 , pp. 1940-1954
    • Koelstra, S.1    Pantic, M.2    Patras, I.3
  • 12
    • 0142192295 scopus 로고    scopus 로고
    • Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data
    • 2
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic models for segmenting and labeling sequence data. pages 282-289, 2001. ICML. 2
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 13
    • 0033742005 scopus 로고    scopus 로고
    • Detection, tracking, and classification of action units in facial expression
    • 5
    • J. Lien, T. Kanade, J. Cohn, and C. Li. Detection, tracking, and classification of action units in facial expression. J. of Rob. and Aut.Systems, 31(3):131-146. 5
    • J. of Rob. and Aut.Systems , vol.31 , Issue.3 , pp. 131-146
    • Lien, J.1    Kanade, T.2    Cohn, J.3    Li, C.4
  • 14
    • 70449562409 scopus 로고    scopus 로고
    • A framework for automated measurement of the intensity of non-posed facial action units
    • 1
    • M. Mahoor, S. Cadavid, D. Messinger, and J. Cohn. A framework for automated measurement of the intensity of non-posed facial action units. CVPRW, pages 74-80, 2009. 1
    • (2009) CVPRW , pp. 74-80
    • Mahoor, M.1    Cadavid, S.2    Messinger, D.3    Cohn, J.4
  • 15
    • 4544221352 scopus 로고    scopus 로고
    • Particle filtering with factorized likelihoods for tracking facial features
    • 5, 7
    • I. Patras and M. Pantic. Particle Filtering with Factorized Likelihoods for Tracking Facial Features. FG, pages 97-102, 2004. 5, 7
    • (2004) FG , pp. 97-102
    • Patras, I.1    Pantic, M.2
  • 16
    • 33745824894 scopus 로고    scopus 로고
    • Conditional random fields for object recognition
    • 3
    • A. Quattoni, M. Collins, and T. Darrell. Conditional random fields for object recognition. NIPS, pages 1097-1104, 2004. 3
    • (2004) NIPS , pp. 1097-1104
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 17
    • 0026755044 scopus 로고
    • Automatic recognition and analysis of human faces and facial expressions: A survey
    • 1
    • A. Samal and P. A. Iyengar. Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recognition, 25(1):65-77, 1992. 1
    • (1992) Pattern Recognition , vol.25 , Issue.1 , pp. 65-77
    • Samal, A.1    Iyengar, P.A.2
  • 20
    • 84898035653 scopus 로고    scopus 로고
    • Dynamic facial expression recognition using a bayesian temporal manifold model
    • 1
    • C. Shan, S. Gong, and P. W. Mcowan. Dynamic facial expression recognition using a bayesian temporal manifold model. BMVC, pages 297-306, 2006. 1
    • (2006) BMVC , pp. 297-306
    • Shan, C.1    Gong, S.2    McOwan, P.W.3
  • 21
    • 85156208493 scopus 로고    scopus 로고
    • Ranking with large margin principle: Two approaches
    • 2
    • A. Shashua and A. Levin. Ranking with large margin principle: Two approaches. pages 973-944, 2002. NIPS. 2
    • (2002) NIPS , pp. 973-944
    • Shashua, A.1    Levin, A.2
  • 22
    • 84856294719 scopus 로고    scopus 로고
    • Fully automatic recognition of the temporal phases of facial actions
    • 1
    • M. F. Valstar and M. Pantic. Fully automatic recognition of the temporal phases of facial actions. IEEE Trans. on Systems, Man, and Cybernetics, 42(1):28-43, 2012. 1
    • (2012) IEEE Trans. on Systems, Man, and Cybernetics , vol.42 , Issue.1 , pp. 28-43
    • Valstar, M.F.1    Pantic, M.2
  • 23
    • 77953189352 scopus 로고    scopus 로고
    • Rankboost with l1 regularization for facial expression recognition and intensity estimation
    • 1
    • P. Yang, Q. Liu, and D. N. Metaxas. Rankboost with l1 regularization for facial expression recognition and intensity estimation. ICCV, pages 1018-1025, 2009. 1
    • (2009) ICCV , pp. 1018-1025
    • Yang, P.1    Liu, Q.2    Metaxas, D.N.3
  • 24
    • 67650668039 scopus 로고    scopus 로고
    • A high-resolution 3d dynamic facial expression database
    • 5
    • L. Yin, X. Chen, Y. Sun, T. Worm, and M. Reale. A high-resolution 3d dynamic facial expression database. FG, pages 679-684, 2008. 5
    • (2008) FG , pp. 679-684
    • Yin, L.1    Chen, X.2    Sun, Y.3    Worm, T.4    Reale, M.5
  • 25
    • 57149144228 scopus 로고    scopus 로고
    • A survey of affect recognition methods: Audio, visual, and spontaneous expressions
    • 1
    • Z. Zeng, M. Pantic, G. Roisman, and T. Huang. A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE PAMI, 31:39-58, 2009. 1
    • (2009) IEEE PAMI , vol.31 , pp. 39-58
    • Zeng, Z.1    Pantic, M.2    Roisman, G.3    Huang, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.