메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1266-1273

A unified framework for event summarization and rare event detection

Author keywords

[No Author keywords available]

Indexed keywords

CONVENTIONAL METHODS; ENERGY MODEL; EVENT DETECTION; GRAPH STRUCTURES; MARKOV CHAIN MONTE CARLO METHOD; SPECIFIC ENERGY; SUBGRAPHS; UNIFIED FRAMEWORK;

EID: 84866672771     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247810     Document Type: Conference Paper
Times cited : (50)

References (24)
  • 1
    • 34247614190 scopus 로고    scopus 로고
    • Detecting irregularities in images and in video
    • 1
    • O. Boiman and M. Irani. Detecting irregularities in images and in video. IJCV, 74(1):17-31, 2007. 1
    • (2007) IJCV , vol.74 , Issue.1 , pp. 17-31
    • Boiman, O.1    Irani, M.2
  • 2
    • 84856661125 scopus 로고    scopus 로고
    • Learning spatiotemporal graphs of human activities
    • 1
    • W. Brendel and S. Todorovic. Learning spatiotemporal graphs of human activities. ICCV, 2011. 1
    • (2011) ICCV
    • Brendel, W.1    Todorovic, S.2
  • 3
    • 85008013399 scopus 로고    scopus 로고
    • Introduction to the special section on video surveillance
    • 1
    • R. Collins, A. Lipton, and T. Kanade. Introduction to the special section on video surveillance. PAMI, 22(8):745-746., 2000. 1
    • (2000) PAMI , vol.22 , Issue.8 , pp. 745-746
    • Collins, R.1    Lipton, A.2    Kanade, T.3
  • 4
    • 70450202741 scopus 로고    scopus 로고
    • Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos
    • 1
    • A. Gupta, P. Srinivasan, J. Shi, and L. S. Davis. Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos. CVPR, 2009. 1
    • (2009) CVPR
    • Gupta, A.1    Srinivasan, P.2    Shi, J.3    Davis, L.S.4
  • 5
    • 67049158079 scopus 로고    scopus 로고
    • Efficient discovery of statistically significant association rules
    • 2, 3, 4, 5
    • W. Hamalainen and M. Nykanen. Efficient discovery of statistically significant association rules. ICDM, 2008. 2, 3, 4, 5
    • (2008) ICDM
    • Hamalainen, W.1    Nykanen, M.2
  • 6
    • 85085175172 scopus 로고    scopus 로고
    • A markov clustering topic model for mining behaviour in video
    • 1, 5, 6, 7
    • T. Hospedales, S. Gong, and T. Xiang. A markov clustering topic model for mining behaviour in video. ICCV, 2009. 1, 5, 6, 7
    • (2009) ICCV
    • Hospedales, T.1    Gong, S.2    Xiang, T.3
  • 7
    • 33746576905 scopus 로고    scopus 로고
    • A system for learning statistical motion patterns
    • 1
    • W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system for learning statistical motion patterns. PAMI, 28(9):1450-1464., 2006. 1
    • (2006) PAMI , vol.28 , Issue.9 , pp. 1450-1464
    • Hu, W.1    Xiao, X.2    Fu, Z.3    Xie, D.4    Tan, T.5    Maybank, S.6
  • 8
    • 70450214749 scopus 로고    scopus 로고
    • Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models
    • 1
    • L. Kratz and K. Nishino. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. CVPR, 2009. 1
    • (2009) CVPR
    • Kratz, L.1    Nishino, K.2
  • 9
    • 77956008040 scopus 로고    scopus 로고
    • Whats going on? discovering spatio-temporal dependencies in dynamic scenes
    • 1, 5, 7
    • D. Kuettel, M. D. Breitenstein, L. V. Gool, and V. Ferrari. Whats going on? discovering spatio-temporal dependencies in dynamic scenes. CVPR, 2010. 1, 5, 7
    • (2010) CVPR
    • Kuettel, D.1    Breitenstein, M.D.2    Gool, L.V.3    Ferrari, V.4
  • 10
    • 80052882471 scopus 로고    scopus 로고
    • Scenario-based video event recognition by constraint flow
    • 1
    • S. Kwak, B. Han, and J. H. Han. Scenario-based video event recognition by constraint flow. CVPR, 2011. 1
    • (2011) CVPR
    • Kwak, S.1    Han, B.2    Han, J.H.3
  • 11
    • 77953183249 scopus 로고    scopus 로고
    • Simultaneous video synchronization and rare event detection via cross-entropy monte carlo optimization
    • 1
    • J. Kwon and K. M. Lee. Simultaneous video synchronization and rare event detection via cross-entropy monte carlo optimization. Computer Vision Workshops (ICCV Workshops), 2009. 1
    • (2009) Computer Vision Workshops (ICCV Workshops)
    • Kwon, J.1    Lee, K.M.2
  • 12
    • 84863049929 scopus 로고    scopus 로고
    • Tracking by sampling trackers
    • 4
    • J. Kwon and K. M. Lee. Tracking by sampling trackers. ICCV, 2011. 4
    • (2011) ICCV
    • Kwon, J.1    Lee, K.M.2
  • 13
    • 70450171456 scopus 로고    scopus 로고
    • Multi-camera activity correlation analysis
    • 2, 8
    • C. C. Loy, T. Xiang, and S. Gong. Multi-camera activity correlation analysis. CVPR, 2009. 2, 8
    • (2009) CVPR
    • Loy, C.C.1    Xiang, T.2    Gong, S.3
  • 14
    • 0019647180 scopus 로고
    • An iterative image registration technique with an application to stereo vision
    • 2
    • B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. IJCAI, 1981. 2
    • (1981) IJCAI
    • Lucas, B.1    Kanade, T.2
  • 17
    • 33847638524 scopus 로고    scopus 로고
    • Automated visual surveillance in realistic scenarios
    • 1
    • M. Shah, O. Javed, and K. Shafique. Automated visual surveillance in realistic scenarios. MultiMedia, 14(1):30-39, 2007. 1
    • (2007) MultiMedia , vol.14 , Issue.1 , pp. 30-39
    • Shah, M.1    Javed, O.2    Shafique, K.3
  • 18
    • 63849117955 scopus 로고    scopus 로고
    • Unsupervised activity perception by hierarchical bayesian models
    • 1
    • X. Wang, X. Ma, and E. Grimson. Unsupervised activity perception by hierarchical bayesian models. PAMI, 31(3):539-555., 2009. 1
    • (2009) PAMI , vol.31 , Issue.3 , pp. 539-539
    • Wang, X.1    Ma, X.2    Grimson, E.3
  • 19
    • 77956002728 scopus 로고    scopus 로고
    • Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes
    • 1
    • S. Wu, B. E. Moore, and M. Shah. Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. CVPR, 2010. 1
    • (2010) CVPR
    • Wu, S.1    Moore, B.E.2    Shah, M.3
  • 20
    • 41749113798 scopus 로고    scopus 로고
    • Video behavior profiling for anomaly detection
    • 1, 2
    • T. Xiang and S. Gong. Video behavior profiling for anomaly detection. PAMI, 30(5):893-908, 2008. 1, 2
    • (2008) PAMI , vol.30 , Issue.5 , pp. 893-908
    • Xiang, T.1    Gong, S.2
  • 21
    • 33644783522 scopus 로고    scopus 로고
    • Self-tuning spectral clustering
    • 2
    • L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. NIPS, 2004. 2
    • (2004) NIPS
    • Zelnik-Manor, L.1    Perona, P.2
  • 22
    • 41949100170 scopus 로고    scopus 로고
    • Detecting irregularities in images and in video
    • 2
    • H. Zhang, J. E. Frittsb, and S. A. Goldmana. Detecting irregularities in images and in video. CVIU, 110(2):260-280, 2008. 2
    • (2008) CVIU , vol.110 , Issue.2 , pp. 260-280
    • Zhang, H.1    Frittsb, J.E.2    Goldmana, S.A.3
  • 23
    • 80052872689 scopus 로고    scopus 로고
    • Online detection of unusual events in videos via dynamic sparse coding
    • 1
    • B. Zhao, L. Fei-Fei, and E. P. Xing. Online detection of unusual events in videos via dynamic sparse coding. CVPR, 2011. 1
    • (2011) CVPR
    • Zhao, B.1    Fei-Fei, L.2    Xing, E.P.3
  • 24
    • 5044228350 scopus 로고    scopus 로고
    • Detecting unusual activity in video
    • 1, 2
    • H. Zhong, M. Visontai, and J. Shi. Detecting unusual activity in video. CVPR, 2004. 1, 2
    • (2004) CVPR
    • Zhong, H.1    Visontai, M.2    Shi, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.