메뉴 건너뛰기




Volumn 14, Issue 39, 2012, Pages 13487-13501

Lithium oxides precipitation in nonaqueous Li-air batteries

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84866669233     PISSN: 14639076     EISSN: None     Source Type: Journal    
DOI: 10.1039/c2cp42768k     Document Type: Review
Times cited : (46)

References (107)
  • 1
    • 79958031768 scopus 로고    scopus 로고
    • Challenges for rechargeable batteries
    • J. B. Goodenough Y. Kim Challenges for rechargeable batteries J. Power Sources 2010 196 6688 6694
    • (2010) J. Power Sources , vol.196 , pp. 6688-6694
    • Goodenough, J.B.1    Kim, Y.2
  • 2
    • 83655183076 scopus 로고    scopus 로고
    • 2 and Li-S batteries with high energy storage
    • 2 and Li-S batteries with high energy storage Nat. Mater. 2011 11 1 19 29
    • (2011) Nat. Mater. , vol.11 , Issue.1 , pp. 19-29
    • Bruce, P.G.1
  • 3
    • 77954754227 scopus 로고    scopus 로고
    • Lithium-Air Battery: Promise and Challenges
    • G. Girishkumar et al., Lithium-Air Battery: Promise and Challenges J. Phys. Chem. Lett. 2010 1 14 2193 2203
    • (2010) J. Phys. Chem. Lett. , vol.1 , Issue.14 , pp. 2193-2203
    • Girishkumar, G.1
  • 4
    • 43049097887 scopus 로고    scopus 로고
    • Theoretical Energy Density of Li-Air Batteries
    • J. P. Zheng et al., Theoretical Energy Density of Li-Air Batteries J. Electrochem. Soc. 2008 155 6 A432
    • (2008) J. Electrochem. Soc. , vol.155 , Issue.6 , pp. 432
    • Zheng, J.P.1
  • 5
    • 80053019507 scopus 로고    scopus 로고
    • Lithium-air and lithium-sulfur batteries
    • P. G. Bruce L. J. Hardwick K. M. Abraham Lithium-air and lithium-sulfur batteries MRS Bull. 2011 36 07 506 512
    • (2011) MRS Bull. , vol.36 , Issue.7 , pp. 506-512
    • Bruce, P.G.1    Hardwick, L.J.2    Abraham, K.M.3
  • 6
    • 84855328636 scopus 로고    scopus 로고
    • A Critical Review of Li/Air Batteries
    • J. Christensen et al., A Critical Review of Li/Air Batteries J. Electrochem. Soc. 2012 159 2 R1
    • (2012) J. Electrochem. Soc. , vol.159 , Issue.2 , pp. 1
    • Christensen, J.1
  • 7
    • 57249107849 scopus 로고    scopus 로고
    • Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries
    • M. Winter et al., Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries Monatsh. Chem. 2001 132 4 473 486
    • (2001) Monatsh. Chem. , vol.132 , Issue.4 , pp. 473-486
    • Winter, M.1
  • 8
    • 56049087953 scopus 로고    scopus 로고
    • Lithium anode for lithium-air secondary batteries
    • N. Imanishi et al., Lithium anode for lithium-air secondary batteries J. Power Sources 2008 185 2 1392 1397
    • (2008) J. Power Sources , vol.185 , Issue.2 , pp. 1392-1397
    • Imanishi, N.1
  • 9
    • 0036747465 scopus 로고    scopus 로고
    • Characterization of the Lithium/Oxygen Organic Electrolyte Battery
    • J. Read Characterization of the Lithium/Oxygen Organic Electrolyte Battery J. Electrochem. Soc. 2002 149 9 A1190
    • (2002) J. Electrochem. Soc. , vol.149 , Issue.9 , pp. 1190
    • Read, J.1
  • 10
    • 0142053170 scopus 로고    scopus 로고
    • Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery
    • J. Read et al., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery J. Electrochem. Soc. 2003 150 10 A1351 A1356
    • (2003) J. Electrochem. Soc. , vol.150 , Issue.10
    • Read, J.1
  • 11
    • 34249101547 scopus 로고    scopus 로고
    • Li-air batteries: A classic example of limitations owing to solubilities
    • I. Kowalczk J. Read M. Salomon Li-air batteries: A classic example of limitations owing to solubilities Pure Appl. Chem. 2007 79 5 851 860
    • (2007) Pure Appl. Chem. , vol.79 , Issue.5 , pp. 851-860
    • Kowalczk, I.1    Read, J.2    Salomon, M.3
  • 12
    • 82555193624 scopus 로고    scopus 로고
    • A lithium-air capacitor-battery based on a hybrid electrolyte
    • Y. Wang P. He H. Zhou A lithium-air capacitor-battery based on a hybrid electrolyte Energy Environ. Sci. 2011 4 12 4994
    • (2011) Energy Environ. Sci. , vol.4 , Issue.12 , pp. 4994
    • Wang, Y.1    He, P.2    Zhou, H.3
  • 13
    • 82955217180 scopus 로고    scopus 로고
    • Single-Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithium-Air Batteries
    • T. T. Truong et al., Single-Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithium-Air Batteries Adv. Mater. 2011 23 42 4947 4952
    • (2011) Adv. Mater. , vol.23 , Issue.42 , pp. 4947-4952
    • Truong, T.T.1
  • 14
    • 79751528254 scopus 로고    scopus 로고
    • A non-aqueous electrolyte for the operation of Li/air battery in ambient environment
    • S. S. Zhang K. Xu J. Read A non-aqueous electrolyte for the operation of Li/air battery in ambient environment J. Power Sources 2011 196 8 3906 3910
    • (2011) J. Power Sources , vol.196 , Issue.8 , pp. 3906-3910
    • Zhang, S.S.1    Xu, K.2    Read, J.3
  • 15
    • 78650516808 scopus 로고    scopus 로고
    • Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery
    • S. S. Zhang J. Read Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery J. Power Sources 2011 196 5 2867 2870
    • (2011) J. Power Sources , vol.196 , Issue.5 , pp. 2867-2870
    • Zhang, S.S.1    Read, J.2
  • 16
    • 69549121934 scopus 로고    scopus 로고
    • Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment
    • W. Xu et al., Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment J. Electrochem. Soc. 2009 156 10 A773
    • (2009) J. Electrochem. Soc. , vol.156 , Issue.10 , pp. 773
    • Xu, W.1
  • 17
    • 72249117803 scopus 로고    scopus 로고
    • A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery
    • B. Kumar et al., A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery J. Electrochem. Soc. 2010 157 1 A50
    • (2010) J. Electrochem. Soc. , vol.157 , Issue.1 , pp. 50
    • Kumar, B.1
  • 18
    • 79957596245 scopus 로고    scopus 로고
    • Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry
    • B. D. McCloskey et al., Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry J. Phys. Chem. Lett. 2011 2 10 1161 1166
    • (2011) J. Phys. Chem. Lett. , vol.2 , Issue.10 , pp. 1161-1166
    • McCloskey, B.D.1
  • 19
    • 79751531496 scopus 로고    scopus 로고
    • 2 batteries with organic carbonate electrolytes
    • 2 batteries with organic carbonate electrolytes J. Power Sources 2011 196 8 3894 3899
    • (2011) J. Power Sources , vol.196 , Issue.8 , pp. 3894-3899
    • Xu, W.1
  • 21
    • 76749140480 scopus 로고    scopus 로고
    • Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries
    • W. Xu et al., Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries Electrochem. Solid-State Lett. 2010 13 4 A48
    • (2010) Electrochem. Solid-State Lett. , vol.13 , Issue.4 , pp. 48
    • Xu, W.1
  • 26
    • 79955470574 scopus 로고    scopus 로고
    • 2 batteries in non-aqueous electrolyte
    • 2 batteries in non-aqueous electrolyte J. Power Sources 2011 196 13 5674 5678
    • (2011) J. Power Sources , vol.196 , Issue.13 , pp. 5674-5678
    • Xiao, J.1
  • 27
    • 79959284316 scopus 로고    scopus 로고
    • Methoxybenzene as an Electrolyte Solvent for the Primary Lithium Metal Air Battery
    • O. Crowther B. Meyer M. Salomon Methoxybenzene as an Electrolyte Solvent for the Primary Lithium Metal Air Battery Electrochem. Solid-State Lett. 2011 14 8 A113
    • (2011) Electrochem. Solid-State Lett. , vol.14 , Issue.8 , pp. 113
    • Crowther, O.1    Meyer, B.2    Salomon, M.3
  • 28
    • 47749125321 scopus 로고    scopus 로고
    • 2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries
    • 2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries Electrochem. Commun. 2008 10 8 1195 1197
    • (2008) Electrochem. Commun. , vol.10 , Issue.8 , pp. 1195-1197
    • Xie, B.1
  • 29
    • 70449519960 scopus 로고    scopus 로고
    • A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries
    • L. F. Li et al., A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries Electrochem. Commun. 2009 11 12 2296 2299
    • (2009) Electrochem. Commun. , vol.11 , Issue.12 , pp. 2296-2299
    • Li, L.F.1
  • 30
    • 77949418264 scopus 로고    scopus 로고
    • Boron Esters as Tunable Anion Carriers for Non-Aqueous Batteries Electrochemistry
    • D. Shanmukaraj et al., Boron Esters as Tunable Anion Carriers for Non-Aqueous Batteries Electrochemistry J. Am. Chem. Soc. 2010 132 9 3055 3062
    • (2010) J. Am. Chem. Soc. , vol.132 , Issue.9 , pp. 3055-3062
    • Shanmukaraj, D.1
  • 31
    • 34548435987 scopus 로고    scopus 로고
    • Electrochemical impedance investigation of proton exchange membrane fuel cells experienced subzero temperature
    • J. Hou et al., Electrochemical impedance investigation of proton exchange membrane fuel cells experienced subzero temperature J. Power Sources 2007 171 2 610 616
    • (2007) J. Power Sources , vol.171 , Issue.2 , pp. 610-616
    • Hou, J.1
  • 32
    • 36549084024 scopus 로고    scopus 로고
    • Investigation of resided water effects on PEM fuel cell after cold start
    • J. Hou et al., Investigation of resided water effects on PEM fuel cell after cold start Int. J. Hydrogen Energy 2007 32 17 4503 4509
    • (2007) Int. J. Hydrogen Energy , vol.32 , Issue.17 , pp. 4503-4509
    • Hou, J.1
  • 33
    • 77955296098 scopus 로고    scopus 로고
    • Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers
    • Z. Miao et al., Characteristics of proton exchange membrane fuel cells cold start with silica in cathode catalyst layers Int. J. Hydrogen Energy 2010 35 11 5552 5557
    • (2010) Int. J. Hydrogen Energy , vol.35 , Issue.11 , pp. 5552-5557
    • Miao, Z.1
  • 34
    • 43049150110 scopus 로고    scopus 로고
    • Ice formation and distribution in the catalyst layer during freeze-start process - CRYO-SEM investigation
    • J. Li S. Lee J. Roberts Ice formation and distribution in the catalyst layer during freeze-start process - CRYO-SEM investigation Electrochim. Acta 2008 53 16 5391 5396
    • (2008) Electrochim. Acta , vol.53 , Issue.16 , pp. 5391-5396
    • Li, J.1    Lee, S.2    Roberts, J.3
  • 35
    • 77949742218 scopus 로고    scopus 로고
    • Optimization of Air Electrode for Li/Air Batteries
    • J. Xiao et al., Optimization of Air Electrode for Li/Air Batteries J. Electrochem. Soc. 2010 157 4 A487
    • (2010) J. Electrochem. Soc. , vol.157 , Issue.4 , pp. 487
    • Xiao, J.1
  • 37
    • 0029769438 scopus 로고    scopus 로고
    • A Polymer Electrolyte-Based Rechargeable Lithium-Oxygen Battery
    • K. M. Z. J. Abraham A Polymer Electrolyte-Based Rechargeable Lithium-Oxygen Battery J. Electrochem. Soc. 1996 143 1 5
    • (1996) J. Electrochem. Soc. , vol.143 , pp. 1-5
    • Abraham, K.M.Z.J.1
  • 39
    • 77952416713 scopus 로고    scopus 로고
    • Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery
    • C. O. Laoire S. Mukerjee K. M. Abraham E. J. Plichta M. A. Hendrickson Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery J. Phys. Chem. C 2010 114 9178 9186
    • (2010) J. Phys. Chem. C , vol.114 , pp. 9178-9186
    • Laoire, C.O.1    Mukerjee, S.2    Abraham, K.M.3    Plichta, E.J.4    Hendrickson, M.A.5
  • 40
    • 79959871542 scopus 로고    scopus 로고
    • + Electrolyte
    • + Electrolyte Angew. Chem., Int. Ed. 2011 50 28 6351 6355
    • (2011) Angew. Chem., Int. Ed. , vol.50 , Issue.28 , pp. 6351-6355
    • Peng, Z.1
  • 41
    • 77955797778 scopus 로고    scopus 로고
    • Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries
    • Y.-C. Lu et al., Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries J. Electrochem. Soc. 2010 157 9 A1016
    • (2010) J. Electrochem. Soc. , vol.157 , Issue.9 , pp. 1016
    • Lu, Y.-C.1
  • 42
    • 81855172049 scopus 로고    scopus 로고
    • Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries
    • Y.-C. Lu H. A. Gasteiger Y. Shao-Horn Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries J. Am. Chem. Soc. 2011 133 47 19048 19051
    • (2011) J. Am. Chem. Soc. , vol.133 , Issue.47 , pp. 19048-19051
    • Lu, Y.-C.1    Gasteiger, H.A.2    Shao-Horn, Y.3
  • 43
    • 79957673636 scopus 로고    scopus 로고
    • 2 Battery with Alkyl Carbonate Electrolytes
    • 2 Battery with Alkyl Carbonate Electrolytes J. Am. Chem. Soc. 2011 133 20 8040 8047
    • (2011) J. Am. Chem. Soc. , vol.133 , Issue.20 , pp. 8040-8047
    • Freunberger, S.A.1
  • 44
    • 79960682405 scopus 로고    scopus 로고
    • Spectroscopic Characterization of Solid Discharge Products in Li-Air Cells with Aprotic Carbonate Electrolytes
    • G. M. Veith et al., Spectroscopic Characterization of Solid Discharge Products in Li-Air Cells with Aprotic Carbonate Electrolytes J. Phys. Chem. C 2011 115 29 14325 14333
    • (2011) J. Phys. Chem. C , vol.115 , Issue.29 , pp. 14325-14333
    • Veith, G.M.1
  • 45
    • 84860873910 scopus 로고    scopus 로고
    • 2 Battery with a Dimethylformamide Electrolyte
    • 2 Battery with a Dimethylformamide Electrolyte J. Am. Chem. Soc. 2012 134 18 7952 7957
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.18 , pp. 7952-7957
    • Chen, Y.1
  • 46
    • 84255191069 scopus 로고    scopus 로고
    • Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes
    • Z. Zhang et al., Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes J. Phys. Chem. C 2011 115 51 25535 25542
    • (2011) J. Phys. Chem. C , vol.115 , Issue.51 , pp. 25535-25542
    • Zhang, Z.1
  • 47
    • 80052496571 scopus 로고    scopus 로고
    • The Lithium-Oxygen Battery with Ether-Based Electrolytes
    • S. A. Freunberger et al., The Lithium-Oxygen Battery with Ether-Based Electrolytes Angew. Chem., Int. Ed. 2011 50 37 8609 8613
    • (2011) Angew. Chem., Int. Ed. , vol.50 , Issue.37 , pp. 8609-8613
    • Freunberger, S.A.1
  • 49
    • 0142053170 scopus 로고    scopus 로고
    • Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery
    • J. Read et al., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery J. Electrochem. Soc. 2003 150 10 A1351
    • (2003) J. Electrochem. Soc. , vol.150 , Issue.10 , pp. 1351
    • Read, J.1
  • 50
    • 70350365413 scopus 로고    scopus 로고
    • The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery
    • X.-h. Yang Y.-y. Xia The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery J. Solid State Electrochem. 2009 14 1 109 114
    • (2009) J. Solid State Electrochem. , vol.14 , Issue.1 , pp. 109-114
    • Yang, X.-H.1    Xia, Y.-Y.2
  • 51
    • 77949484954 scopus 로고    scopus 로고
    • Ambient operation of Li/Air batteries
    • J.-G. Zhang et al., Ambient operation of Li/Air batteries J. Power Sources 2010 195 13 4332 4337
    • (2010) J. Power Sources , vol.195 , Issue.13 , pp. 4332-4337
    • Zhang, J.-G.1
  • 52
    • 80052194760 scopus 로고    scopus 로고
    • High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives
    • Y. Wang et al., High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives Energy Environ. Sci. 2011 4 9 3697
    • (2011) Energy Environ. Sci. , vol.4 , Issue.9 , pp. 3697
    • Wang, Y.1
  • 53
    • 69449091427 scopus 로고    scopus 로고
    • Air electrode design for sustained high power operation of Li/air batteries
    • R. E. Williford J.-G. Zhang Air electrode design for sustained high power operation of Li/air batteries J. Power Sources 2009 194 2 1164 1170
    • (2009) J. Power Sources , vol.194 , Issue.2 , pp. 1164-1170
    • Williford, R.E.1    Zhang, J.-G.2
  • 54
    • 71249107420 scopus 로고    scopus 로고
    • Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity
    • C. Tran X.-Q. Yang D. Qu Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity J. Power Sources 2010 195 7 2057 2063
    • (2010) J. Power Sources , vol.195 , Issue.7 , pp. 2057-2063
    • Tran, C.1    Yang, X.-Q.2    Qu, D.3
  • 55
    • 79551603362 scopus 로고    scopus 로고
    • Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling
    • P. Albertus et al., Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling J. Electrochem. Soc. 2011 158 3 A343
    • (2011) J. Electrochem. Soc. , vol.158 , Issue.3 , pp. 343
    • Albertus, P.1
  • 57
    • 79955384715 scopus 로고    scopus 로고
    • The role of transition metal interfaces in the electronic transport in lithium-air batteries
    • J. Chen et al., The role of transition metal interfaces in the electronic transport in lithium-air batteries Catal. Today 2011 165 1 2 9
    • (2011) Catal. Today , vol.165 , Issue.1 , pp. 2-9
    • Chen, J.1
  • 58
    • 84855927066 scopus 로고    scopus 로고
    • Lithium Peroxide Surfaces Are Metallic, while Lithium Oxide Surfaces Are Not
    • M. D. Radin et al., Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not J. Am. Chem. Soc. 2012 134 2 1093 1103
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.2 , pp. 1093-1103
    • Radin, M.D.1
  • 59
    • 79952531626 scopus 로고    scopus 로고
    • Method Development to Evaluate the Oxygen Reduction Activity of High-Surface-Area Catalysts for Li-Air Batteries
    • Y.-C. Lu H. A. Gasteiger Y. Shao-Horn Method Development to Evaluate the Oxygen Reduction Activity of High-Surface-Area Catalysts for Li-Air Batteries Electrochem. Solid-State Lett. 2011 14 5 A70
    • (2011) Electrochem. Solid-State Lett. , vol.14 , Issue.5 , pp. 70
    • Lu, Y.-C.1    Gasteiger, H.A.2    Shao-Horn, Y.3
  • 60
    • 24944499346 scopus 로고    scopus 로고
    • Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte
    • T. Kuboki et al., Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte J. Power Sources 2005 146 1-2 766 769
    • (2005) J. Power Sources , vol.146 , Issue.12 , pp. 766-769
    • Kuboki, T.1
  • 61
    • 70349512737 scopus 로고    scopus 로고
    • Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries
    • M. Mirzaeian P. J. Hall Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries Electrochim. Acta 2009 54 28 7444 7451
    • (2009) Electrochim. Acta , vol.54 , Issue.28 , pp. 7444-7451
    • Mirzaeian, M.1    Hall, P.J.2
  • 62
    • 80052487362 scopus 로고    scopus 로고
    • Influence of the cathode porosity on the discharge performance of the lithium-oxygen battery
    • S. R. Younesi et al., Influence of the cathode porosity on the discharge performance of the lithium-oxygen battery J. Power Sources 2011 196 22 9835 9838
    • (2011) J. Power Sources , vol.196 , Issue.22 , pp. 9835-9838
    • Younesi, S.R.1
  • 63
    • 84862833375 scopus 로고    scopus 로고
    • On the Micro-, Meso-, and Macroporous Structures of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers
    • T. Soboleva et al., On the Micro-, Meso-, and Macroporous Structures of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers ACS Appl. Mater. Interfaces 2010 2 2 375 384
    • (2010) ACS Appl. Mater. Interfaces , vol.2 , Issue.2 , pp. 375-384
    • Soboleva, T.1
  • 64
    • 67349193236 scopus 로고    scopus 로고
    • Preparation of mesocellular carbon foam and its application for lithium/oxygen battery
    • X.-h. Yang P. He Y.-y. Xia Preparation of mesocellular carbon foam and its application for lithium/oxygen battery Electrochem. Commun. 2009 11 6 1127 1130
    • (2009) Electrochem. Commun. , vol.11 , Issue.6 , pp. 1127-1130
    • Yang, X.-H.1    He, Y.-Y.P.2
  • 65
    • 77149173768 scopus 로고    scopus 로고
    • Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery
    • J. S. Hummelshoj et al., Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery J. Chem. Phys. 2010 132 7 071101
    • (2010) J. Chem. Phys. , vol.132 , Issue.7 , pp. 071101
    • Hummelshoj, J.S.1
  • 66
    • 78751571124 scopus 로고    scopus 로고
    • Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation
    • C. Tran et al., Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation Carbon 2011 49 4 1266 1271
    • (2011) Carbon , vol.49 , Issue.4 , pp. 1266-1271
    • Tran, C.1
  • 67
    • 79958173608 scopus 로고    scopus 로고
    • 2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries
    • 2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries Electrochem. Commun. 2011 13 7 698 700
    • (2011) Electrochem. Commun. , vol.13 , Issue.7 , pp. 698-700
    • Li, J.1
  • 69
    • 80755189353 scopus 로고    scopus 로고
    • Hierarchically Porous Graphene as a Lithium-Air Battery Electrode
    • J. Xiao et al., Hierarchically Porous Graphene as a Lithium-Air Battery Electrode Nano Lett. 2011 11 11 5071 5078
    • (2011) Nano Lett. , vol.11 , Issue.11 , pp. 5071-5078
    • Xiao, J.1
  • 70
    • 80052130684 scopus 로고    scopus 로고
    • Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries
    • J. Hou et al., Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries Phys. Chem. Chem. Phys. 2011 13 34 15384 15402
    • (2011) Phys. Chem. Chem. Phys. , vol.13 , Issue.34 , pp. 15384-15402
    • Hou, J.1
  • 72
    • 36148980785 scopus 로고    scopus 로고
    • 2 cathode for rechargeable lithium batteries: The effect of a catalyst
    • 2 cathode for rechargeable lithium batteries: The effect of a catalyst J. Power Sources 2007 174 2 1177 1182
    • (2007) J. Power Sources , vol.174 , Issue.2 , pp. 1177-1182
    • Débart, A.1
  • 73
    • 53549112443 scopus 로고    scopus 로고
    • 2 Electrode in Rechargeable Lithium Batteries
    • 2 Electrode in Rechargeable Lithium Batteries Angew. Chem., Int. Ed. 2008 47 24 4521 4524
    • (2008) Angew. Chem., Int. Ed. , vol.47 , Issue.24 , pp. 4521-4524
    • Débart, A.1
  • 74
    • 71549138378 scopus 로고    scopus 로고
    • Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries
    • H. Cheng K. Scott Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries J. Power Sources 2010 195 5 1370 1374
    • (2010) J. Power Sources , vol.195 , Issue.5 , pp. 1370-1374
    • Cheng, H.1    Scott, K.2
  • 76
    • 77951152932 scopus 로고    scopus 로고
    • The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li-Oxygen Batteries
    • Y.-C. Lu et al., The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li-Oxygen Batteries Electrochem. Solid-State Lett. 2010 13 6 A69
    • (2010) Electrochem. Solid-State Lett. , vol.13 , Issue.6 , pp. 69
    • Lu, Y.-C.1
  • 77
    • 77955738865 scopus 로고    scopus 로고
    • Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries
    • Y.-C. Lu et al., Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries J. Am. Chem. Soc. 2010 132 35 12170 12171
    • (2010) J. Am. Chem. Soc. , vol.132 , Issue.35 , pp. 12170-12171
    • Lu, Y.-C.1
  • 79
    • 80053111552 scopus 로고    scopus 로고
    • Selection of oxygen reduction catalysts for rechargeable lithium-air batteries - Metal or oxide?
    • H. Cheng K. Scott Selection of oxygen reduction catalysts for rechargeable lithium-air batteries - Metal or oxide? Appl. Catal., B 2011 108-109 140 151
    • (2011) Appl. Catal., B , vol.108-109 , pp. 140-151
    • Cheng, H.1    Scott, K.2
  • 80
    • 79954598111 scopus 로고    scopus 로고
    • Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries
    • S. S. Zhang X. Ren J. Read Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries Electrochim. Acta 2011 56 12 4544 4548
    • (2011) Electrochim. Acta , vol.56 , Issue.12 , pp. 4544-4548
    • Zhang, S.S.1    Ren, X.2    Read, J.3
  • 81
    • 80455131322 scopus 로고    scopus 로고
    • Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes
    • E. M. Benbow et al., Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes J. Phys. Chem. C 2011 115 44 22009 22017
    • (2011) J. Phys. Chem. C , vol.115 , Issue.44 , pp. 22009-22017
    • Benbow, E.M.1
  • 82
    • 77957576768 scopus 로고    scopus 로고
    • 2 (TM) Hollow Spheres: One-Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions
    • 2 (TM) Hollow Spheres: One-Step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions Adv. Funct. Mater. 2010 20 19 3373 3382
    • (2010) Adv. Funct. Mater. , vol.20 , Issue.19 , pp. 3373-3382
    • Jin, L.1
  • 83
    • 81355133006 scopus 로고    scopus 로고
    • 4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries
    • 4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries J. Electrochem. Soc. 2011 158 12 A1379
    • (2011) J. Electrochem. Soc. , vol.158 , Issue.12 , pp. 1379
    • Wang, L.1
  • 84
    • 77954743927 scopus 로고    scopus 로고
    • Lithium-Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes
    • G. Q. Zhang et al., Lithium-Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes J. Electrochem. Soc. 2010 157 8 A953
    • (2010) J. Electrochem. Soc. , vol.157 , Issue.8 , pp. 953
    • Zhang, G.Q.1
  • 85
    • 78751628828 scopus 로고    scopus 로고
    • Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries
    • P. Kichambare et al., Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries J. Power Sources 2011 196 6 3310 3316
    • (2011) J. Power Sources , vol.196 , Issue.6 , pp. 3310-3316
    • Kichambare, P.1
  • 86
    • 79958143343 scopus 로고    scopus 로고
    • Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries
    • Y. Li et al., Nitrogen-doped carbon nanotubes as cathode for lithium-air batteries Electrochem. Commun. 2011 13 7 668 672
    • (2011) Electrochem. Commun. , vol.13 , Issue.7 , pp. 668-672
    • Li, Y.1
  • 87
    • 80052103777 scopus 로고    scopus 로고
    • Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium-Air Batteries
    • Y. Yang et al., Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium-Air Batteries J. Electrochem. Soc. 2011 158 10 B1211
    • (2011) J. Electrochem. Soc. , vol.158 , Issue.10 , pp. 1211
    • Yang, Y.1
  • 88
    • 80055071038 scopus 로고    scopus 로고
    • Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance
    • B. Sun et al., Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance Carbon 2012 50 2 727 733
    • (2012) Carbon , vol.50 , Issue.2 , pp. 727-733
    • Sun, B.1
  • 89
    • 80052077844 scopus 로고    scopus 로고
    • Oxygen Reduction by Lithium on Model Carbon and Oxidized Carbon Structures
    • Y. Xu W. A. Shelton Oxygen Reduction by Lithium on Model Carbon and Oxidized Carbon Structures J. Electrochem. Soc. 2011 158 10 A1177
    • (2011) J. Electrochem. Soc. , vol.158 , Issue.10 , pp. 1177
    • Xu, Y.1    Shelton, W.A.2
  • 90
    • 79957611506 scopus 로고    scopus 로고
    • 2/Carbon Nanotube/Carbon Nanofiber Composite Catalytic Air Electrodes for Rechargeable Lithium-air Batteries
    • 2/Carbon Nanotube/Carbon Nanofiber Composite Catalytic Air Electrodes for Rechargeable Lithium-air Batteries J. Electrochem. Soc. 2011 158 7 A822
    • (2011) J. Electrochem. Soc. , vol.158 , Issue.7 , pp. 822
    • Zhang, G.Q.1
  • 93
    • 79958031461 scopus 로고    scopus 로고
    • 2/Pd catalyst air electrode for rechargeable lithium-air battery
    • 2/Pd catalyst air electrode for rechargeable lithium-air battery J. Power Sources 2011 196 16 7016 7020
    • (2011) J. Power Sources , vol.196 , Issue.16 , pp. 7016-7020
    • Thapa, A.K.1    Ishihara, T.2
  • 94
    • 81355153810 scopus 로고    scopus 로고
    • 2 Air Electrode Modified with Pd for Rechargeability in Lithium-Air Battery
    • 2 Air Electrode Modified with Pd for Rechargeability in Lithium-Air Battery J. Electrochem. Soc. 2011 158 12 A1483
    • (2011) J. Electrochem. Soc. , vol.158 , Issue.12 , pp. 1483
    • Thapa, A.K.1
  • 96
    • 76349090957 scopus 로고    scopus 로고
    • Hybrid Air-Electrode for Li/Air Batteries
    • J. Xiao et al., Hybrid Air-Electrode for Li/Air Batteries J. Electrochem. Soc. 2010 157 3 A294
    • (2010) J. Electrochem. Soc. , vol.157 , Issue.3 , pp. 294
    • Xiao, J.1
  • 98
    • 78449286793 scopus 로고    scopus 로고
    • Some Possible Approaches for Improving the Energy Density of Li-Air Batteries
    • P. Andrei et al., Some Possible Approaches for Improving the Energy Density of Li-Air Batteries J. Electrochem. Soc. 2010 157 12 A1287
    • (2010) J. Electrochem. Soc. , vol.157 , Issue.12 , pp. 1287
    • Andrei, P.1
  • 99
    • 77953139872 scopus 로고    scopus 로고
    • Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy
    • M. Mirzaeian P. J. Hall Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy J. Power Sources 2010 195 19 6817 6824
    • (2010) J. Power Sources , vol.195 , Issue.19 , pp. 6817-6824
    • Mirzaeian, M.1    Hall, P.J.2
  • 100
    • 37349094134 scopus 로고    scopus 로고
    • Ionic resistance of the catalyst layer after the PEM fuel cell suffered freeze
    • J. Hou et al., Ionic resistance of the catalyst layer after the PEM fuel cell suffered freeze J. Power Sources 2008 176 1 118 121
    • (2008) J. Power Sources , vol.176 , Issue.1 , pp. 118-121
    • Hou, J.1
  • 101
    • 0034274544 scopus 로고    scopus 로고
    • Catalyst gradient for cathode active layer of proton exchange membrane fuel cell
    • O. Antoine et al., Catalyst gradient for cathode active layer of proton exchange membrane fuel cell Electrochim. Acta 2000 45 27 4493 4500
    • (2000) Electrochim. Acta , vol.45 , Issue.27 , pp. 4493-4500
    • Antoine, O.1
  • 102
    • 79954594811 scopus 로고    scopus 로고
    • Oxygen reduction reaction catalyst on lithium/air battery discharge performance
    • X. Ren et al., Oxygen reduction reaction catalyst on lithium/air battery discharge performance J. Mater. Chem. 2011 21 27 10118
    • (2011) J. Mater. Chem. , vol.21 , Issue.27 , pp. 10118
    • Ren, X.1
  • 104
    • 80052787582 scopus 로고    scopus 로고
    • Reversible performance loss induced by sequential failed cold start of PEM fuel cells
    • J. Hou et al., Reversible performance loss induced by sequential failed cold start of PEM fuel cells Int. J. Hydrogen Energy 2011 36 19 12444 12451
    • (2011) Int. J. Hydrogen Energy , vol.36 , Issue.19 , pp. 12444-12451
    • Hou, J.1
  • 105
    • 84860191491 scopus 로고    scopus 로고
    • Anomalous Discharge Product Distribution in Lithium-Air Cathodes
    • J. Nanda et al., Anomalous Discharge Product Distribution in Lithium-Air Cathodes J. Phys. Chem. C 2012 116 15 8401 8408
    • (2012) J. Phys. Chem. C , vol.116 , Issue.15 , pp. 8401-8408
    • Nanda, J.1
  • 106
    • 33750002473 scopus 로고    scopus 로고
    • Analysis of PEMFC freeze degradation at -20 °c after gas purging
    • J. Hou et al., Analysis of PEMFC freeze degradation at -20 °C after gas purging J. Power Sources 2006 162 1 513 520
    • (2006) J. Power Sources , vol.162 , Issue.1 , pp. 513-520
    • Hou, J.1
  • 107
    • 33845355212 scopus 로고    scopus 로고
    • Comparative Study of PEM Fuel Cell Storage at -20 °c after Gas Purging
    • J. Hou et al., Comparative Study of PEM Fuel Cell Storage at -20 °C after Gas Purging Electrochem. Solid-State Lett. 2007 10 1 B11 B15
    • (2007) Electrochem. Solid-State Lett. , vol.10 , Issue.1
    • Hou, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.