메뉴 건너뛰기




Volumn , Issue , 2012, Pages 449-453

An attribute weighted fuzzy c-means algorithm for incomplete data sets

Author keywords

attribute weighting; fuzzy c means; fuzzy clustering; incomplete data

Indexed keywords

ATTRIBUTE VALUES; ATTRIBUTE WEIGHT; ATTRIBUTE WEIGHTING; CLUSTERING RESULTS; DATA SETS; FUZZY C MEAN; INCOMPLETE DATA; SCIENCE AND ENGINEERING TECHNOLOGIES; WEIGHTED FUZZY C-MEANS;

EID: 84866663086     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSSE.2012.6257226     Document Type: Conference Paper
Times cited : (7)

References (16)
  • 4
    • 0036832985 scopus 로고    scopus 로고
    • A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets
    • X. L. Huang, and Q. M. Zhu, "A pseudo-nearest-neighbor approach for missing data recovery on Gaussian random data sets," Pattern Recognition Letters, vol. 23, pp. 1613-1622, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 1613-1622
    • Huang, X.L.1    Zhu, Q.M.2
  • 9
    • 0036132613 scopus 로고    scopus 로고
    • Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm
    • R. J. Hathaway, and J. C. Bezdek, "Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm," Pattern Recognition Letters, vol. 23, pp. 151-160, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 151-160
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 10
    • 1942532746 scopus 로고    scopus 로고
    • Linear fuzzy clustering techniques with missing values and their application to local principle component analysis
    • K. Honda, and H. Ichihashi, "Linear fuzzy clustering techniques with missing values and their application to local principle component analysis," IEEE Transactions on Fuzzy Systems, vol. 12, pp. 183-193, 2004.
    • (2004) IEEE Transactions on Fuzzy Systems , vol.12 , pp. 183-193
    • Honda, K.1    Ichihashi, H.2
  • 11
    • 78649930585 scopus 로고    scopus 로고
    • A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data
    • D. Li, H. Gu, and L. Y. Zhang, "A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data," Expert Systems with Applications, vol. 37, pp. 6942-6947, 2010.
    • (2010) Expert Systems with Applications , vol.37 , pp. 6942-6947
    • Li, D.1    Gu, H.2    Zhang, L.Y.3
  • 12
    • 79951578021 scopus 로고    scopus 로고
    • Missing data analysis with fuzzy c-means: A study of its application in a psychological scenario
    • G. D. Alessandro. "Missing data analysis with fuzzy c-means: a study of its application in a psychological scenario," Expert systems with Applications, vol. 38, pp.6793-6797, 2011.
    • (2011) Expert Systems with Applications , vol.38 , pp. 6793-6797
    • Alessandro, G.D.1
  • 16
    • 57849144858 scopus 로고
    • Optimization of Clustering Criteria by Reformulation
    • R. J. Hathaway, and J. C. Bezdek, "Optimization of Clustering Criteria by Reformulation," IEEE Transactions on Fuzzy Systems, vol. 3, pp. 241-245, 1995.
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , pp. 241-245
    • Hathaway, R.J.1    Bezdek, J.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.