-
1
-
-
84870247126
-
Random projections for k-means clustering
-
abs/1011.4632, 2
-
C. Boutsidis, A. Zouzias, and P. Drineas. Random projections for k-means clustering. CoRR, abs/1011.4632, 2010. 2
-
(2010)
CoRR
-
-
Boutsidis, C.1
Zouzias, A.2
Drineas, P.3
-
2
-
-
73849136385
-
Large-scale discovery of spatially related images
-
2
-
O. Chum and J.Matas. Large-scale discovery of spatially related images. IEEE PAMI, 32(2):371-377, 2010. 2
-
(2010)
IEEE PAMI
, vol.32
, Issue.2
, pp. 371-377
-
-
Chum, O.1
Matas, J.2
-
3
-
-
1942485278
-
Using the triangle inequality to accelerate k-means
-
2
-
C. Elkan. Using the triangle inequality to accelerate k-means. In ICML, 2003. 2
-
(2003)
ICML
-
-
Elkan, C.1
-
4
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
5
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR Workshop on Generative-Model Based Vision, 2004. 5
-
(2004)
CVPR Workshop on Generative-Model Based Vision
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
5
-
-
1942517297
-
Random projection for high dimensional data clustering: A cluster ensemble approach
-
2
-
X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A cluster ensemble approach. In ICML, pages 186-193, 2003. 2
-
(2003)
ICML
, pp. 186-193
-
-
Fern, X.Z.1
Brodley, C.E.2
-
6
-
-
0000014486
-
Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
-
1, 3
-
E. W. Forgy. Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21:768-780, 1965. 1, 3
-
(1965)
Biometrics
, vol.21
, pp. 768-780
-
-
Forgy, E.W.1
-
7
-
-
58149215985
-
A fast k-means implementation using coresets
-
2
-
G. Frahling and C. Sohler. A fast k-means implementation using coresets. Int. J. Comput. Geometry Appl., 18(6):605-625, 2008. 2
-
(2008)
Int. J. Comput. Geometry Appl.
, vol.18
, Issue.6
, pp. 605-625
-
-
Frahling, G.1
Sohler, C.2
-
8
-
-
78649317568
-
Product quantization for nearest neighbor search
-
2
-
H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE PAMI, 33(1):117-128, 2011. 2
-
(2011)
IEEE PAMI
, vol.33
, Issue.1
, pp. 117-128
-
-
Jégou, H.1
Douze, M.2
Schmid, C.3
-
9
-
-
0036647190
-
An efficient k-means clustering algorithm: Analysis and implementation
-
2
-
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE PAMI, 24(7):881-892, 2002. 2
-
(2002)
IEEE PAMI
, vol.24
, Issue.7
, pp. 881-892
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
Piatko, C.D.4
Silverman, R.5
Wu, A.Y.6
-
10
-
-
65249117543
-
Modeling and recognition of landmark image collections using iconic scene graphs
-
2
-
X. Li, C.Wu, C. Zach, S. Lazebnik, and J.-M. Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. In ECCV, 2008. 2
-
(2008)
ECCV
-
-
Li, X.1
Wu, C.2
Zach, C.3
Lazebnik, S.4
Frahm, J.-M.5
-
11
-
-
0020102027
-
Least squares quantization in PCM
-
March, 1, 3
-
S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129-137, March 1982. 1, 3
-
(1982)
IEEE Transactions on Information Theory
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.P.1
-
14
-
-
0034592784
-
Efficient clustering of high-dimensional data sets with application to reference matching
-
2
-
A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data sets with application to reference matching. In KDD, 2000. 2
-
(2000)
KDD
-
-
McCallum, A.1
Nigam, K.2
Ungar, L.H.3
-
15
-
-
70349675925
-
Fast approximate nearest neighbors with automatic algorithm configuration
-
6
-
M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISSAPP (1), pages 331-340, 2009. 6
-
(2009)
VISSAPP
, Issue.1
, pp. 331-340
-
-
Muja, M.1
Lowe, D.G.2
-
16
-
-
33845592987
-
Scalable recognition with a vocabulary tree
-
1, 5, 7
-
D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, 2006. 1, 5, 7
-
(2006)
CVPR
-
-
Nistér, D.1
Stewénius, H.2
-
18
-
-
34948903793
-
Object retrieval with large vocabularies and fast spatial matching
-
1, 2, 3, 5, 6, 7, 8
-
J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007. 1, 2, 3, 5, 6, 7, 8
-
(2007)
CVPR
-
-
Philbin, J.1
Chum, O.2
Isard, M.3
Sivic, J.4
Zisserman, A.5
-
19
-
-
65249182449
-
Object mining using a matching graph on very large image collections
-
2
-
J. Philbin and A. Zisserman. Object mining using a matching graph on very large image collections. In ICVGIP, pages 738-745, 2008. 2
-
(2008)
ICVGIP
, pp. 738-745
-
-
Philbin, J.1
Zisserman, A.2
-
20
-
-
80052947789
-
Modeling and recognition of landmark image collections using iconic scene graphs
-
2
-
R. Raguram, C. Wu, J.-M. Frahm, and S. Lazebnik. Modeling and recognition of landmark image collections using iconic scene graphs. IJCV, 95(3):213-239, 2011. 2
-
(2011)
IJCV
, vol.95
, Issue.3
, pp. 213-239
-
-
Raguram, R.1
Wu, C.2
Frahm, J.-M.3
Lazebnik, S.4
-
21
-
-
77954583359
-
Web-scale k-means clustering
-
2
-
D. Sculley. Web-scale k-means clustering. In WWW, 2010. 2
-
(2010)
WWW
-
-
Sculley, D.1
-
22
-
-
50949090870
-
Scene summarization for online image collections
-
2
-
I. Simon, N. Snavely, and S. M. Seitz. Scene summarization for online image collections. In ICCV, pages 1-8, 2007. 2
-
(2007)
ICCV
, pp. 1-8
-
-
Simon, I.1
Snavely, N.2
Seitz, S.M.3
-
23
-
-
0345414182
-
Video google: A text retrieval approach to object matching in videos
-
1
-
J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, pages 1470-1477, 2003. 1
-
(2003)
ICCV
, pp. 1470-1477
-
-
Sivic, J.1
Zisserman, A.2
-
24
-
-
54749092170
-
80 million tiny images: A large data set for nonparametric object and scene recognition
-
5
-
A. B. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE PAMI, 30(11):1958-1970, 2008. 5
-
(2008)
IEEE PAMI
, vol.30
, Issue.11
, pp. 1958-1970
-
-
Torralba, A.B.1
Fergus, R.2
Freeman, W.T.3
|