메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3037-3044

Fast approximate k-means via cluster closures

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ASSIGNMENT; CLUSTER BOUNDARIES; CLUSTER CENTERS; CLUSTERING QUALITY; COMPLEXITY ANALYSIS; DATA CLUSTERING; DATA POINTS; ITERATIVE ALGORITHM; K-MEANS; K-MEANS ALGORITHM; NEIGHBORHOOD INFORMATION; NEIGHBORING POINT; NUMBER OF CLUSTERS; NUMBER OF DATUM; SPATIAL PARTITION TREE; VISION COMMUNITIES;

EID: 84866640887     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248034     Document Type: Conference Paper
Times cited : (53)

References (25)
  • 1
    • 84870247126 scopus 로고    scopus 로고
    • Random projections for k-means clustering
    • abs/1011.4632, 2
    • C. Boutsidis, A. Zouzias, and P. Drineas. Random projections for k-means clustering. CoRR, abs/1011.4632, 2010. 2
    • (2010) CoRR
    • Boutsidis, C.1    Zouzias, A.2    Drineas, P.3
  • 2
    • 73849136385 scopus 로고    scopus 로고
    • Large-scale discovery of spatially related images
    • 2
    • O. Chum and J.Matas. Large-scale discovery of spatially related images. IEEE PAMI, 32(2):371-377, 2010. 2
    • (2010) IEEE PAMI , vol.32 , Issue.2 , pp. 371-377
    • Chum, O.1    Matas, J.2
  • 3
    • 1942485278 scopus 로고    scopus 로고
    • Using the triangle inequality to accelerate k-means
    • 2
    • C. Elkan. Using the triangle inequality to accelerate k-means. In ICML, 2003. 2
    • (2003) ICML
    • Elkan, C.1
  • 4
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • 5
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR Workshop on Generative-Model Based Vision, 2004. 5
    • (2004) CVPR Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 5
    • 1942517297 scopus 로고    scopus 로고
    • Random projection for high dimensional data clustering: A cluster ensemble approach
    • 2
    • X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A cluster ensemble approach. In ICML, pages 186-193, 2003. 2
    • (2003) ICML , pp. 186-193
    • Fern, X.Z.1    Brodley, C.E.2
  • 6
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
    • 1, 3
    • E. W. Forgy. Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21:768-780, 1965. 1, 3
    • (1965) Biometrics , vol.21 , pp. 768-780
    • Forgy, E.W.1
  • 7
    • 58149215985 scopus 로고    scopus 로고
    • A fast k-means implementation using coresets
    • 2
    • G. Frahling and C. Sohler. A fast k-means implementation using coresets. Int. J. Comput. Geometry Appl., 18(6):605-625, 2008. 2
    • (2008) Int. J. Comput. Geometry Appl. , vol.18 , Issue.6 , pp. 605-625
    • Frahling, G.1    Sohler, C.2
  • 8
    • 78649317568 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • 2
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE PAMI, 33(1):117-128, 2011. 2
    • (2011) IEEE PAMI , vol.33 , Issue.1 , pp. 117-128
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 9
    • 0036647190 scopus 로고    scopus 로고
    • An efficient k-means clustering algorithm: Analysis and implementation
    • 2
    • T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE PAMI, 24(7):881-892, 2002. 2
    • (2002) IEEE PAMI , vol.24 , Issue.7 , pp. 881-892
    • Kanungo, T.1    Mount, D.M.2    Netanyahu, N.S.3    Piatko, C.D.4    Silverman, R.5    Wu, A.Y.6
  • 10
    • 65249117543 scopus 로고    scopus 로고
    • Modeling and recognition of landmark image collections using iconic scene graphs
    • 2
    • X. Li, C.Wu, C. Zach, S. Lazebnik, and J.-M. Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. In ECCV, 2008. 2
    • (2008) ECCV
    • Li, X.1    Wu, C.2    Zach, C.3    Lazebnik, S.4    Frahm, J.-M.5
  • 11
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • March, 1, 3
    • S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129-137, March 1982. 1, 3
    • (1982) IEEE Transactions on Information Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.P.1
  • 13
    • 67650468452 scopus 로고    scopus 로고
    • The planar k-means problem is np-hard
    • 3
    • M. Mahajan, P. Nimbhorkar, and K. R. Varadarajan. The planar k-means problem is np-hard. In WALCOM, pages 274-285, 2009. 3
    • (2009) WALCOM , pp. 274-285
    • Mahajan, M.1    Nimbhorkar, P.2    Varadarajan, K.R.3
  • 14
    • 0034592784 scopus 로고    scopus 로고
    • Efficient clustering of high-dimensional data sets with application to reference matching
    • 2
    • A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data sets with application to reference matching. In KDD, 2000. 2
    • (2000) KDD
    • McCallum, A.1    Nigam, K.2    Ungar, L.H.3
  • 15
    • 70349675925 scopus 로고    scopus 로고
    • Fast approximate nearest neighbors with automatic algorithm configuration
    • 6
    • M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISSAPP (1), pages 331-340, 2009. 6
    • (2009) VISSAPP , Issue.1 , pp. 331-340
    • Muja, M.1    Lowe, D.G.2
  • 16
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • 1, 5, 7
    • D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In CVPR, 2006. 1, 5, 7
    • (2006) CVPR
    • Nistér, D.1    Stewénius, H.2
  • 18
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • 1, 2, 3, 5, 6, 7, 8
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007. 1, 2, 3, 5, 6, 7, 8
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 19
    • 65249182449 scopus 로고    scopus 로고
    • Object mining using a matching graph on very large image collections
    • 2
    • J. Philbin and A. Zisserman. Object mining using a matching graph on very large image collections. In ICVGIP, pages 738-745, 2008. 2
    • (2008) ICVGIP , pp. 738-745
    • Philbin, J.1    Zisserman, A.2
  • 20
    • 80052947789 scopus 로고    scopus 로고
    • Modeling and recognition of landmark image collections using iconic scene graphs
    • 2
    • R. Raguram, C. Wu, J.-M. Frahm, and S. Lazebnik. Modeling and recognition of landmark image collections using iconic scene graphs. IJCV, 95(3):213-239, 2011. 2
    • (2011) IJCV , vol.95 , Issue.3 , pp. 213-239
    • Raguram, R.1    Wu, C.2    Frahm, J.-M.3    Lazebnik, S.4
  • 21
    • 77954583359 scopus 로고    scopus 로고
    • Web-scale k-means clustering
    • 2
    • D. Sculley. Web-scale k-means clustering. In WWW, 2010. 2
    • (2010) WWW
    • Sculley, D.1
  • 22
    • 50949090870 scopus 로고    scopus 로고
    • Scene summarization for online image collections
    • 2
    • I. Simon, N. Snavely, and S. M. Seitz. Scene summarization for online image collections. In ICCV, pages 1-8, 2007. 2
    • (2007) ICCV , pp. 1-8
    • Simon, I.1    Snavely, N.2    Seitz, S.M.3
  • 23
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • 1
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, pages 1470-1477, 2003. 1
    • (2003) ICCV , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 24
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large data set for nonparametric object and scene recognition
    • 5
    • A. B. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE PAMI, 30(11):1958-1970, 2008. 5
    • (2008) IEEE PAMI , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.B.1    Fergus, R.2    Freeman, W.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.