메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2456-2463

Iterative Nearest Neighbors for classification and dimensionality reduction

Author keywords

[No Author keywords available]

Indexed keywords

CONSTRAINED LEAST SQUARES; DIMENSIONALITY REDUCTION; K-NEAREST NEIGHBORS; LOCAL LINEAR EMBEDDING; MACHINE LEARNING APPLICATIONS; NEAREST NEIGHBORS; ORDERS OF MAGNITUDE; REGULARIZED LEAST SQUARES; SPARSE REPRESENTATION;

EID: 84866639066     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247960     Document Type: Conference Paper
Times cited : (32)

References (22)
  • 2
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • MIT Press, 1
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems 14, pages 585-591. MIT Press, 2001. 1
    • (2001) Advances in Neural Information Processing Systems , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 51949090223 scopus 로고    scopus 로고
    • In defense of nearest-neighbor based image classification
    • IEEE Computer Society, 4
    • O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In CVPR. IEEE Computer Society, 2008. 4
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 5
    • 55349134896 scopus 로고    scopus 로고
    • Fast solution of l1-norm minimization problems when the solution may be sparse
    • 5
    • D. L. Donoho and Y. Tsaig. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory, 54(11):4789-4812, 2008. 5
    • (2008) IEEE Transactions on Information Theory , vol.54 , Issue.11 , pp. 4789-4812
    • Donoho, D.L.1    Tsaig, Y.2
  • 7
    • 0001474381 scopus 로고
    • The statistical utilization of multiple measurements
    • 1
    • R. Fisher. The statistical utilization of multiple measurements. Annals of Eugenics, 8:376-386, 1938. 1
    • (1938) Annals of Eugenics , vol.8 , pp. 376-386
    • Fisher, R.1
  • 8
    • 77955994285 scopus 로고    scopus 로고
    • Local features are not lonely - Laplacian sparse coding for image classification
    • 7
    • S. Gao, I. W.-H. Tsang, L.-T. Chia, and P. Zhao. Local features are not lonely - laplacian sparse coding for image classification. In CVPR, pages 3555-3561, 2010. 7
    • (2010) CVPR , pp. 3555-3561
    • Gao, S.1    Tsang, I.W.-H.2    Chia, L.-T.3    Zhao, P.4
  • 9
    • 8644228268 scopus 로고    scopus 로고
    • Locality preserving projections
    • 1, 3
    • X. He and P. Niyogi. Locality preserving projections. In NIPS, 2003. 1, 3
    • (2003) NIPS
    • He, X.1    Niyogi, P.2
  • 10
    • 77956006319 scopus 로고    scopus 로고
    • Robust classification of objects, faces, and flowers using natural image statistics
    • 6
    • C. Kanan and G.W. Cottrell. Robust classification of objects, faces, and flowers using natural image statistics. In CVPR, pages 2472-2479, 2010. 6
    • (2010) CVPR , pp. 2472-2479
    • Kanan, C.1    Cottrell, G.W.2
  • 11
  • 12
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • B. Schölkopf, J. C. Platt, and T. Hoffman, editors, MIT Press, 5
    • H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, NIPS, pages 801-808. MIT Press, 2006. 5
    • (2006) NIPS , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 14
    • 84866650373 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • 1
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. In ICCV, 2001. 1
    • (2001) ICCV
    • Roweis, S.1    Saul, L.2
  • 15
    • 84898446609 scopus 로고    scopus 로고
    • Sparse representation based projections
    • 1, 3, 4, 5
    • R. Timofte and L. Van Gool. Sparse representation based projections. In BMVC, 2011. 1, 3, 4, 5
    • (2011) BMVC
    • Timofte, R.1    Van Gool, L.2
  • 17
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • 7, 8
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010. 7, 8
    • (2010) CVPR
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 20
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • IEEE, 5, 7
    • J. Yang, K. Yu, Y. Gong, and T. S. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, pages 1794-1801. IEEE, 2009. 5, 7
    • (2009) CVPR , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.S.4
  • 21
    • 84863011302 scopus 로고    scopus 로고
    • Sparse representation or collaborative representation: Which helps face recognition?
    • 1, 5, 7
    • L. Zhang, M. Yang, and X. Feng. Sparse representation or collaborative representation: Which helps face recognition? In ICCV, 2011. 1, 5, 7
    • (2011) ICCV
    • Zhang, L.1    Yang, M.2    Feng, X.3
  • 22
    • 33745309913 scopus 로고    scopus 로고
    • Sparse principal component analysis
    • 1
    • H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. JCGS, 15:262-286, 2006. 1
    • (2006) JCGS , vol.15 , pp. 262-286
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.