메뉴 건너뛰기




Volumn , Issue , 2012, Pages 14-23

A constrained frequent pattern mining system for handling aggregate constraints

Author keywords

Aggregate functions; Data mining; Frequent patterns; Monotonicity; Pattern discovery; User constraint

Indexed keywords

AGGREGATE FUNCTION; FREQUENT PATTERNS; MONOTONICITY; PATTERN DISCOVERY; USER CONSTRAINTS;

EID: 84866626711     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2351476.2351479     Document Type: Conference Paper
Times cited : (9)

References (33)
  • 1
    • 0001882616 scopus 로고    scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. VLDB 1994, pp. 487-499.
    • Proc. VLDB 1994 , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 0027621699 scopus 로고    scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proc. ACM SIGMOD 1993, pp. 207-216.
    • Proc. ACM SIGMOD 1993 , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 3
    • 80052409680 scopus 로고    scopus 로고
    • Constrained logistic regression for discriminative pattern mining
    • R. Anand and C.K. Reddy. Constrained logistic regression for discriminative pattern mining. In Proc. ECML PKDD 2011, Part I, pp. 92-107.
    • Proc. ECML PKDD 2011, Part I , pp. 92-107
    • Anand, R.1    Reddy, C.K.2
  • 5
    • 26944496051 scopus 로고    scopus 로고
    • Pushing tougher constraints in frequent pattern mining
    • F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern mining. In Proc. PAKDD 2005, pp. 114-124.
    • (2005) Proc. PAKDD , pp. 114-124
    • Bonchi, F.1    Lucchese, C.2
  • 6
    • 33846237753 scopus 로고    scopus 로고
    • Extending the state-of-the-art of constraint-based pattern discovery
    • Feb.
    • F. Bonchi and C. Lucchese. Extending the state-of-the-art of constraint-based pattern discovery. DKE, 60(2), Feb. 2007, pp. 377-399.
    • (2007) DKE , vol.60 , Issue.2 , pp. 377-399
    • Bonchi, F.1    Lucchese, C.2
  • 7
    • 0034860134 scopus 로고    scopus 로고
    • Mining free itemsets under constraints
    • J.-F. Boulicaut and B. Jeudy. Mining free itemsets under constraints. In Proc. IDEAS 2001, pp. 322-329.
    • (2001) Proc. IDEAS , pp. 322-329
    • Boulicaut, J.-F.1    Jeudy, B.2
  • 8
    • 0031161999 scopus 로고    scopus 로고
    • Beyond market baskets: Generalizing association rules to correlation
    • S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: generalizing association rules to correlation. In Proc. SIGMOD 1997, pp. 265-276.
    • (1997) Proc. SIGMOD , pp. 265-276
    • Brin, S.1    Motwani, R.2    Silverstein, C.3
  • 9
    • 0242625292 scopus 로고    scopus 로고
    • DualMiner: A dual-pruning algorithm for itemsets with constraints
    • C. Bucila, J. Gehrke, D. Kifer, and W.M. White. DualMiner: a dual-pruning algorithm for itemsets with constraints. In Proc. KDD 2002, pp. 42-51.
    • (2002) Proc. KDD , pp. 42-51
    • Bucila, C.1    Gehrke, J.2    Kifer, D.3    White, W.M.4
  • 10
    • 84856097545 scopus 로고    scopus 로고
    • Finding strong groups of friends among friends in social networks
    • J.J. Cameron, C.K.-S. Leung, and S.K. Tanbeer. Finding strong groups of friends among friends in social networks. In Proc. IEEE DASC/SCA 2011, pp. 824-831.
    • (2011) Proc. IEEE DASC/SCA , pp. 824-831
    • Cameron, J.J.1    Leung, C.K.-S.2    Tanbeer, S.K.3
  • 11
    • 52649098497 scopus 로고    scopus 로고
    • Data peeler: Constraint-based closed pattern mining in n-ary relations
    • L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut. Data peeler: Constraint-based closed pattern mining in n-ary relations. In Proc. SDM 2008, pp. 37-48.
    • (2008) Proc. SDM , pp. 37-48
    • Cerf, L.1    Besson, J.2    Robardet, C.3    Boulicaut, J.-F.4
  • 12
    • 68949101473 scopus 로고    scopus 로고
    • An efficient algorithm for mining high utility itemsets with negative item values in large databases
    • Sept.
    • C.-J. Chu, V.S. Tseng, and T. Liang. An efficient algorithm for mining high utility itemsets with negative item values in large databases. J. AMC, 215(2), Sept. 2009, pp. 767-778.
    • (2009) J. AMC , vol.215 , Issue.2 , pp. 767-778
    • Chu, C.-J.1    Tseng, V.S.2    Liang, T.3
  • 14
    • 65449187983 scopus 로고    scopus 로고
    • Constraint programming for itemset mining
    • L. De Raedt, T. Guns, and S. Nijssen. Constraint programming for itemset mining. In Proc. ACM KDD 2008, pp. 204-212.
    • (2008) Proc. ACM KDD , pp. 204-212
    • Raedt, L.D.1    Guns, T.2    Nijssen, S.3
  • 16
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • Jan.
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), Jan. 2004, pp. 53-87.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.1 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 17
    • 80052393162 scopus 로고    scopus 로고
    • Efficient mining of top correlated patterns based on null-invariant measures
    • S. Kim, M. Barsky, and J. Han. Efficient mining of top correlated patterns based on null-invariant measures. In Proc. ECML PKDD 2011, Part II, pp. 177-192.
    • (2011) Proc. ECML PKDD , Issue.PART II , pp. 177-192
    • Kim, S.1    Barsky, M.2    Han, J.3
  • 18
    • 3142594274 scopus 로고    scopus 로고
    • Efficient dynamic mining of constrained frequent sets
    • Dec.
    • L.V.S. Lakshmanan, C.K.-S. Leung, and R. Ng. Efficient dynamic mining of constrained frequent sets. ACM TODS, 28(4), Dec. 2003, pp. 337-389.
    • (2003) ACM TODS , vol.28 , Issue.4 , pp. 337-389
    • Lakshmanan, L.V.S.1    Leung, C.K.-S.2    Ng., R.3
  • 19
  • 20
    • 70350635438 scopus 로고    scopus 로고
    • Mining uncertain data for constrained frequent sets
    • C.K.-S. Leung and D.A. Brajczuk. Mining uncertain data for constrained frequent sets. In Proc. IDEAS 2009, pp. 109-120.
    • (2009) Proc. IDEAS , pp. 109-120
    • Leung, C.K.-S.1    Brajczuk, D.A.2
  • 21
    • 79960301265 scopus 로고    scopus 로고
    • Visual analytics of social networks: Mining and visualizing co-authorship networks
    • C.K.-S. Leung, C.L. Carmichael, and E.W. Teh. Visual analytics of social networks: mining and visualizing co-authorship networks. In Proc. HCII/FAC 2011, pp. 335-345.
    • (2011) Proc. HCII/FAC , pp. 335-345
    • Leung, C.K.-S.1    Carmichael, C.L.2    Teh, E.W.3
  • 22
    • 78649956077 scopus 로고    scopus 로고
    • UCFS2: An enhanced system that mines uncertain data for constrained frequent sets
    • C.K.-S. Leung, B. Hao, and D.A. Brajczuk. uCFS2: an enhanced system that mines uncertain data for constrained frequent sets. In Proc. IDEAS 2010, pp. 32-37.
    • (2010) Proc. IDEAS , pp. 32-37
    • Leung, C.K.-S.1    Hao, B.2    Brajczuk, D.A.3
  • 23
    • 84861433415 scopus 로고    scopus 로고
    • RadialViz: An orientation-free frequent pattern visualizer
    • C.K.-S. Leung and F. Jiang. RadialViz: an orientation-free frequent pattern visualizer. In Proc. PAKDD 2012, Part II, pp. 322-334.
    • (2012) Proc. PAKDD , Issue.PART II , pp. 322-334
    • Leung, C.K.-S.1    Jiang, F.2
  • 24
    • 84863567189 scopus 로고    scopus 로고
    • A new class of constraints for constrained frequent pattern mining
    • C.K.-S. Leung and L. Sun. A new class of constraints for constrained frequent pattern mining. In Proc. ACM SAC 2012, pp. 199-204.
    • (2012) Proc. ACM SAC , pp. 199-204
    • Leung, C.K.-S.1    Sun, L.2
  • 25
    • 84860697181 scopus 로고    scopus 로고
    • Fast tree-based mining of frequent itemsets from uncertain data
    • C.K.-S. Leung and S.K. Tanbeer. Fast tree-based mining of frequent itemsets from uncertain data. In Proc. DASFAA 2012, Part I, pp. 272-287.
    • (2012) Proc. DASFAA , Issue.PART I , pp. 272-287
    • Leung, C.K.-S.1    Tanbeer, S.K.2
  • 26
    • 84866662074 scopus 로고    scopus 로고
    • Mining popular patterns from transactional databases
    • C.K.-S. Leung and S.K. Tanbeer. Mining popular patterns from transactional databases. In Proc. DaWaK 2012, pp. 291-302.
    • (2012) Proc. DaWaK , pp. 291-302
    • Leung, C.K.-S.1    Tanbeer, S.K.2
  • 28
    • 0032092760 scopus 로고    scopus 로고
    • Exploratory mining and pruning optimizations of constrained associations rules
    • R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. In Proc. ACM SIGMOD 1998, pp. 13-24.
    • (1998) Proc. ACM SIGMOD , pp. 13-24
    • Ng, R.T.1    Lakshmanan, L.V.S.2    Han, J.3    Pang, A.4
  • 29
    • 3543095068 scopus 로고    scopus 로고
    • Pushing convertible constraints in frequent itemset mining
    • May
    • J. Pei, J. Han, and L.V.S. Lakshmanan. Pushing convertible constraints in frequent itemset mining. Data Mining and Knowledge Discovery, 8(3), May 2004, pp. 227-252.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , Issue.3 , pp. 227-252
    • Pei, J.1    Han, J.2    Lakshmanan, L.V.S.3
  • 30
    • 84857187541 scopus 로고    scopus 로고
    • Clustering with attribute-level constraints
    • J. Schmidt, E.M. Brändle, and S. Kramer. Clustering with attribute-level constraints. In Proc. IEEE ICDM 2011, pp. 1206-1211.
    • (2011) Proc. IEEE ICDM , pp. 1206-1211
    • Schmidt, J.1    Brändle, E.M.2    Kramer, S.3
  • 31
    • 26944467551 scopus 로고    scopus 로고
    • An efficient framework for mining flexible constraints
    • A. Soulet and B. Crémilleux. An efficient framework for mining flexible constraints. In Proc. PAKDD 2005, pp. 661-671.
    • (2005) Proc. PAKDD , pp. 661-671
    • Soulet, A.1    Crémilleux, B.2
  • 32
    • 79957963811 scopus 로고    scopus 로고
    • LGM: Mining frequent subgraphs from linear graphs
    • Y. Tabei, D. Okanohara, S. Hirose, and K. Tsuda. LGM: mining frequent subgraphs from linear graphs. In Proc. PAKDD 2011, Part II, pp. 26-37.
    • (2011) Proc. PAKDD , Issue.PART II , pp. 26-37
    • Tabei, Y.1    Okanohara, D.2    Hirose, S.3    Tsuda, K.4
  • 33
    • 84861420949 scopus 로고    scopus 로고
    • Selecting feature subset via constraint association rules
    • G. Wang and Q. Song. Selecting feature subset via constraint association rules. In Proc. PAKDD 2012, Part II, pp. 304-321.
    • (2012) Proc. PAKDD , Issue.PART II , pp. 304-321
    • Wang, G.1    Song, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.