-
1
-
-
55649115527
-
A simple proof of the restricted isometry property for random matrices
-
Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253-263 (2008).
-
(2008)
Constr. Approx.
, vol.28
, pp. 253-263
-
-
Baraniuk, R.1
Davenport, M.2
DeVore, R.3
Wakin, M.4
-
2
-
-
31744440684
-
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
-
Candès, E. J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489-509 (2006).
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, pp. 489-509
-
-
Candès, E.J.1
Romberg, J.2
Tao, T.3
-
3
-
-
33745604236
-
Stable signal recovery from incomplete and inaccurate measurements
-
Candès, E. J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59, 1207-1223 (2006).
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, pp. 1207-1223
-
-
Candès, E.J.1
Romberg, J.2
Tao, T.3
-
4
-
-
33947416035
-
Near optimal signal recovery from random projections: universal encoding strategies
-
Candès, E. J., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(1), 5406-5425 (2006).
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.1
, pp. 5406-5425
-
-
Candès, E.J.1
Tao, T.2
-
5
-
-
29144439194
-
Decoding by linear programming
-
Candès, E. J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51, 4203-4215 (2005).
-
(2005)
IEEE Trans. Inf. Theory
, vol.51
, pp. 4203-4215
-
-
Candès, E.J.1
Tao, T.2
-
6
-
-
34548724437
-
Exact reconstruction of sparse signals via nonconvex minimization
-
Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14, 707-710 (2007).
-
(2007)
IEEE Signal Process. Lett.
, vol.14
, pp. 707-710
-
-
Chartrand, R.1
-
7
-
-
44449127493
-
Restricted isometry porperties and nonconvex compressive sensing
-
Chartrand, R., Staneva, V.: Restricted isometry porperties and nonconvex compressive sensing. Inverse Problems 24, 1-14 (2009).
-
(2009)
Inverse Problems
, vol.24
, pp. 1-14
-
-
Chartrand, R.1
Staneva, V.2
-
8
-
-
57349181932
-
Compressed sensing and best k-term approximation
-
Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22, 211-245 (2009).
-
(2009)
J. Am. Math. Soc.
, vol.22
, pp. 211-245
-
-
Cohen, A.1
Dahmen, W.2
DeVore, R.3
-
10
-
-
33645712892
-
Compressed sensing
-
Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289-1306 (2006).
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.1
-
11
-
-
33646365077
-
1-norm solution is also the sparsest solution
-
1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59, 797-829 (2006).
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, pp. 797-829
-
-
Donoho, D.1
-
15
-
-
0347968052
-
Sparse representations in unions of bases
-
Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory 49, 3320-3325 (2003).
-
(2003)
IEEE Trans. Inf. Theory
, vol.49
, pp. 3320-3325
-
-
Gribonval, R.1
Nielsen, M.2
-
16
-
-
77955275408
-
Sparse revovery by non-convex optimization-instance optimality
-
Saab, R., Yi{dotless}lmaz, Ö.: Sparse revovery by non-convex optimization-instance optimality. Appl. Comput. Harmon. Anal. 29, 30-48 (2010).
-
(2010)
Appl. Comput. Harmon. Anal.
, vol.29
, pp. 30-48
-
-
Saab, R.1
Yilmaz, Ö.2
-
17
-
-
75849163827
-
Stability and instance optimality for Gaussian measurements in compressed sensing
-
Wojtaszczyk, P.: Stability and instance optimality for Gaussian measurements in compressed sensing. Found. Comput. Math. 10, 1-13 (2010).
-
(2010)
Found. Comput. Math.
, vol.10
, pp. 1-13
-
-
Wojtaszczyk, P.1
|