-
1
-
-
30444450433
-
Calderón's inverse conductivity problem in the plane
-
K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math, 163 (2006), 265-299.
-
(2006)
Ann. of Math.
, vol.163
, pp. 265-299
-
-
Astala, K.1
Päivärinta, L.2
-
2
-
-
0000298012
-
Stability and reconstruction for an inverse problem for the heat equation
-
K. Bryan and L. F. Caudill Jr, Stability and reconstruction for an inverse problem for the heat equation, Inverse Problems, 14 (1998), 1429-1453.
-
(1998)
Inverse Problems
, vol.14
, pp. 1429-1453
-
-
Bryan, K.1
Caudill Jr., L.F.2
-
3
-
-
0041012141
-
On the numerical solution of an inverse boundary value problem for the heat equation
-
R. Chapko, R. Kress and J. R. Yoon, On the numerical solution of an inverse boundary value problem for the heat equation, Inverse Problems, 14 (1998), 853-867.
-
(1998)
Inverse Problems
, vol.14
, pp. 853-867
-
-
Chapko, R.1
Kress, R.2
Yoon, J.R.3
-
4
-
-
10844280684
-
A boundary identification method for an inverse heat conduction problem with an application in ironmaking
-
T. P. Fredman, A boundary identification method for an inverse heat conduction problem with an application in ironmaking, Heat Mass Transfer, 41 (2004), 95-103.
-
(2004)
Heat Mass Transfer
, vol.41
, pp. 95-103
-
-
Fredman, T.P.1
-
5
-
-
34548548410
-
Probing for electrical inclusions with complex spherical waves
-
T. Ide, H. Isozaki, S. Nakata, S. Siltanen and G. Uhlmann, Probing for electrical inclusions with complex spherical waves, Comm. in Pure and Appl. Math., 60 (2007), 1415-1442.
-
(2007)
Comm. In Pure and Appl. Math.
, vol.60
, pp. 1415-1442
-
-
Ide, T.1
Isozaki, H.2
Nakata, S.3
Siltanen, S.4
Uhlmann, G.5
-
6
-
-
64849102626
-
Extracting discontinuity in a heat conductiong body. One-space dimensional case
-
M. Ikehata, Extracting discontinuity in a heat conductiong body. One-space dimensional case, Appl. Anal., 86 (2007), 963-1005.
-
(2007)
Appl. Anal.
, vol.86
, pp. 963-1005
-
-
Ikehata, M.1
-
8
-
-
78049325563
-
On the reconstruction of inclusions in a heat conductivity body from dynamical boundary data over a finite interval
-
M. Ikehata and M. Kawashita, On the reconstruction of inclusions in a heat conductivity body from dynamical boundary data over a finite interval, Inverse Problems, 26 (2010), 15pp.
-
(2010)
Inverse Problems
, vol.26
, pp. 15
-
-
Ikehata, M.1
Kawashita, M.2
-
9
-
-
0001607563
-
The inverse conductivity problem with one measurement: Stability and estimation of size
-
H. Kang, J. K. Seo and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size, SIAM J. Math. Anal., 28 (1997), 1389-1405.
-
(1997)
SIAM J. Math. Anal.
, vol.28
, pp. 1389-1405
-
-
Kang, H.1
Seo, J.K.2
Sheen, D.3
-
10
-
-
12344271462
-
The method of fundamental solutions for the backward heat conduction problem
-
N. S. Mera, The method of fundamental solutions for the backward heat conduction problem, Inverse Probl. Sci. Eng., 13 (2005), 65-78.
-
(2005)
Inverse Probl. Sci. Eng.
, vol.13
, pp. 65-78
-
-
Mera, N.S.1
-
11
-
-
0001110912
-
A global uniquness theorem for an inverse boundary value problem
-
J. Sylvester and G. Uhlmann, A global uniquness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.
-
(1987)
Ann. of Math
, vol.125
, pp. 153-169
-
-
Sylvester, J.1
Uhlmann, G.2
-
12
-
-
42549116079
-
Quantitative estimates of unique continuation for parabolic equations, determi-nation of time-varying boundaries and optimal stability estimates, Topical Review
-
S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determi-nation of time-varying boundaries and optimal stability estimates, Topical Review, Inverse Problems, 24 (2008), 81pp.
-
(2008)
Inverse Problems
, vol.24
, pp. 81
-
-
Vessella, S.1
-
13
-
-
56949108529
-
An inverse boundary problem for one-dimensional heat equation with a multilayer domain
-
T. Wei and Y. S. Li, An inverse boundary problem for one-dimensional heat equation with a multilayer domain, Engineering Analysis with Boundary Elements, 33 (2009), 225-232.
-
(2009)
Engineering Analysis with Boundary Elements
, vol.33
, pp. 225-232
-
-
Wei, T.1
Li, Y.S.2
-
14
-
-
70449585223
-
Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation
-
T. Wei and M. Yamamoto, Reconstruction of a moving boundary from Cauchy data in one-dimensional heat equation, Inverse Problems in Science and Engineering, 17 (2009), 551-567.
-
(2009)
Inverse Problems in Science and Engineering
, vol.17
, pp. 551-567
-
-
Wei, T.1
Yamamoto, M.2
-
15
-
-
77957025636
-
Reconstructing electromagnetic obstacles by the enclosure method
-
T. Zhou, Reconstructing electromagnetic obstacles by the enclosure method, Inverse Problems and Imaging, 4 (2010), 547-569.
-
(2010)
Inverse Problems and Imaging
, vol.4
, pp. 547-569
-
-
Zhou, T.1
|