-
1
-
-
0025853455
-
Simulation of high-resolution QRS complex using ventricular model with a fractal conduction system Effects of ischemia on high-requency QRS potentials
-
Abbound, S., Berenfeld, O., and Sadeh, D. (1991). Simulation of high-resolution QRS complex using ventricular model with a fractal conduction system. Effects of ischemia on high-requency QRS potentials. Circ. Res. 68, 1751-1760.
-
(1991)
Circ. Res.
, vol.68
, pp. 1751-1760
-
-
Abbound, S.1
Berenfeld, O.2
Sadeh, D.3
-
2
-
-
84856760863
-
Multifractal feature descriptor for histopathol-ogy
-
Atupelage, C., Nagahashi, H., Yam-aguchi, M., Sakamoto, M., and Hashiguchi, A. (2012). Multifractal feature descriptor for histopathol-ogy. Anal. Cell. Pathol. (Amst.) 35, 123-126.
-
(2012)
Anal. Cell. Pathol. (Amst.)
, vol.35
, pp. 123-126
-
-
Atupelage, C.1
Nagahashi, H.2
Yam-aguchi, M.3
Sakamoto, M.4
Hashiguchi, A.5
-
3
-
-
0024990840
-
Fractal branchings: the basis of myocardial flow heterogeneities?
-
Bassingthwaighte, J., Van Beek, J., and King, R. (1990). Fractal branchings: the basis of myocardial flow heterogeneities? Ann. N. Y. Acad. Sci. 591, 392-401.
-
(1990)
Ann N. Y. Acad. Sci.
, vol.591
, pp. 392-401
-
-
Bassingthwaighte, J.1
Van Beek, J.2
King, R.3
-
4
-
-
5444248119
-
Time-dependent Hurst exponent in financial time series
-
Carbone, A., Castelli, G., and Stanley, H. E. (2004). Time-dependent Hurst exponent in financial time series. Physica A 344,267-271.
-
(2004)
Physica A
, vol.344
, pp. 267-271
-
-
Carbone, A.1
Castelli, G.2
Stanley, H.E.3
-
5
-
-
35949010692
-
Direct determination of the f(α) singularity spectrum
-
Chhabra, A., and Jensen, R. V. (1989). Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett. 62, 1327-1330.
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 1327-1330
-
-
Chhabra, A.1
Jensen, R.V.2
-
6
-
-
0027373239
-
Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp
-
Collins, J. J., and De Luca, C. J. (1993). Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95, 308-318.
-
(1993)
Brain Res
, vol.95
, pp. 308-318
-
-
Collins, J.J.1
De Luca, C.J.2
-
8
-
-
0033958878
-
Physiological time series: distinguish fractal noises from motions
-
Eke, A., Herman, P., Bassingthwaighte, J. B., Raymond, G. M., Percival, D. B., Cannon, M., Balla, I., and Ikényi, C. (2000). Physiological time series: distinguish fractal noises from motions. Eur. J. Physiol. 439, 403-414.
-
(2000)
Eur. J. Physiol.
, vol.439
, pp. 403-414
-
-
Eke, A.1
Herman, P.2
Bassingthwaighte, J.B.3
Raymond, G.M.4
Percival, D.B.5
Cannon, M.6
Balla, I.7
Ikényi, C.8
-
9
-
-
0036169404
-
Fractal characterization of complexity in temporal physiological signals
-
Eke, A., Hermann, P., Kocsis, L., and Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23, R1-R38.
-
(2002)
Physiol. Meas.
, vol.23
-
-
Eke, A.1
Hermann, P.2
Kocsis, L.3
Kozak, L.R.4
-
10
-
-
80052437426
-
Facilitating joint Chaos and fractal analysis of biosignals through nonlinear adaptive filtering
-
doi:10.1371/jour-nal.pone.0024331
-
Gao, J. B., Hu, J., and Tung, W.-W. (2011). Facilitating joint Chaos and fractal analysis of biosignals through nonlinear adaptive filtering. PLoS ONE 6, e24331. doi:10.1371/jour-nal.pone.0024331.
-
(2011)
PLoS ONE
, vol.6
-
-
Gao, J.B.1
Hu, J.2
Tung, W.-W.3
-
11
-
-
32844460216
-
Assessment of long range correlation in time series: how to avoid pitfalls
-
Gao, J. B., Hu, J., Tung, W.-W., Cao, Y. H., Sarshar, N., and Roychowd-hury, V. P. (2006). Assessment of long range correlation in time series: how to avoid pitfalls. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73,016117.
-
(2006)
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
, vol.73
, pp. 016117
-
-
Gao, J.B.1
Hu, J.2
Tung, W.-W.3
Cao, Y.H.4
Sarshar, N.5
Roychowd-hury, V.P.6
-
12
-
-
0029870969
-
Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside
-
Goldberger, A. L. (1996). Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347, 1312-1314.
-
(1996)
Lancet
, vol.347
, pp. 1312-1314
-
-
Goldberger, A.L.1
-
13
-
-
0037133144
-
Fractal dynamics in physiology: alterations with disease and aging
-
Goldberger, A. L., Amaral, L. A., Haus-dorff, J. M., Ivanov, P. C., Peng, C. K., and Stanley, H. E. (2002). Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. U.S.A. 99, 2466-2472.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 2466-2472
-
-
Goldberger, A.L.1
Amaral, L.A.2
Haus-dorff, J.M.3
Ivanov, P.C.4
Peng, C.K.5
Stanley, H.E.6
-
14
-
-
34548216348
-
Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking
-
Hausdorff, J. M. (2007). Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26, 555-589.
-
(2007)
Hum. Mov. Sci.
, vol.26
, pp. 555-589
-
-
Hausdorff, J.M.1
-
15
-
-
65449184962
-
Multifractal analysis of sunspot time series: the effects of the 11-year cycle andFourier truncation
-
P02066
-
Hu, J., Gao, J. B., and Wang, X. S. (2009). Multifractal analysis of sunspot time series: the effects of the 11-year cycle andFourier truncation. J. Stat. Mech. P02066, 1-20.
-
(2009)
J. Stat. Mech
, pp. 1-20
-
-
Hu, J.1
Gao, J.B.2
Wang, X.S.3
-
16
-
-
79961131882
-
Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: a comparison study with detrended fluctuation analysis and wavelet leaders
-
Huang, X. Y., Schmitt, F. G., Hermand, J.-P., Gagne, Y., Lu, Z. M., and Liu, Y.L. (2011). Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: a comparison study with detrended fluctuation analysis and wavelet leaders. Phys. Rev. EStat. Nonlin. Soft Matter Phys. 84,016208.
-
(2011)
Phys. Rev. EStat. Nonlin. Soft Matter Phys
, vol.84
, pp. 016208
-
-
Huang, X.Y.1
Schmitt, F.G.2
Hermand, J.-P.3
Gagne, Y.4
Lu, Z.M.5
Liu, Y.L.6
-
17
-
-
0000759022
-
Long-term storage capacity of reservoirs
-
Hurst, H. E. (1951). Long-term storage capacity of reservoirs. T Am. Soc. Civ.Eng. 116,770-808.
-
(1951)
T Am. Soc. Civ.Eng.
, vol.116
, pp. 770-808
-
-
Hurst, H.E.1
-
19
-
-
0344327144
-
Multifractality in human heartbeat dynamics
-
Ivanov, P. C., Amaral, L. A. N., Goldberger, A. L., Havlin, S., Rosen-blum, M. G., Struzik, Z., and Stanley, H. (1999). Multifractality in human heartbeat dynamics. Nature 399,461-465.
-
(1999)
Nature
, vol.399
, pp. 461-465
-
-
Ivanov, P.C.1
Amaral, L.A.N.2
Goldberger, A.L.3
Havlin, S.4
Rosen-blum, M.G.5
Struzik, Z.6
Stanley, H.7
-
20
-
-
34548253690
-
Wavelet leaders in multi-fractal analysis
-
ed. T. Qian, M. I. Vai, and Y. Xu (Basel: Birkhäuser Verlag)
-
Jaffard, S., Lashermes, B., and Abry, P. (2006). "Wavelet leaders in multi-fractal analysis," in Wavelet Analysis and Applications, ed. T. Qian, M. I. Vai, and Y. Xu (Basel: Birkhäuser Verlag), 219-264.
-
(2006)
Wavelet Analysis and Applications
, pp. 219-264
-
-
Jaffard, S.1
Lashermes, B.2
Abry, P.3
-
21
-
-
0035876536
-
Detecting long-range correlation with detrended fluctuation analysis
-
Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. A. A., Havlin, S., and Bunde, A. (2001). Detecting long-range correlation with detrended fluctuation analysis. Physica A 295, 441-454.
-
(2001)
Physica A
, vol.295
, pp. 441-454
-
-
Kantelhardt, J.W.1
Koscielny-Bunde, E.2
Rego, H.A.A.3
Havlin, S.4
Bunde, A.5
-
22
-
-
0037114537
-
Multifractal detrended fluctuation analysis of nonstationarytime series
-
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., and Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationarytime series. Physica A 316, 87-114.
-
(2002)
Physica A
, vol.316
, pp. 87-114
-
-
Kantelhardt, J.W.1
Zschiegner, S.A.2
Koscielny-Bunde, E.3
Havlin, S.4
Bunde, A.5
Stanley, H.E.6
-
23
-
-
0026659799
-
A fractal continuum model of the pulmonary arterial tree
-
Krenz, G., Linehan, J., and Dawson, C. (1992). A fractal continuum model of the pulmonary arterial tree. J. Appl. Physiol. 72, 2225-2237.
-
(1992)
J. Appl. Physiol.
, vol.72
, pp. 2225-2237
-
-
Krenz, G.1
Linehan, J.2
Dawson, C.3
-
24
-
-
15044351937
-
New insight in the estimation of scaling exponents
-
Lashermes, B., Abry, P., and Chainais, P. (2004). New insight in the estimation of scaling exponents. Int. J. Wavelets Multi. 2, 497-523.
-
(2004)
Int. J. Wavelets Multi.
, vol.2
, pp. 497-523
-
-
Lashermes, B.1
Abry, P.2
Chainais, P.3
-
25
-
-
70149091472
-
Fractal and multifractal analysis: a review
-
Lopes, R., and Betrouni, N. (2009). Fractal and multifractal analysis: a review. Med. Image Anal. 13, 634-649.
-
(2009)
Med. Image Anal.
, vol.13
, pp. 634-649
-
-
Lopes, R.1
Betrouni, N.2
-
26
-
-
80053259182
-
Aging in autonomic control by multifractal studies of cardiac interbeat intervals in the VLF band
-
Makowiec, D., Rynkiewicz, A., Wdowczyk-Szulc, J., Zarczyriska-Buchowiecka, M., Galaska, R., and Kryszewski, S. (2011). Aging in autonomic control by multifractal studies of cardiac interbeat intervals in the VLF band. Physiol. Meas. 32, 1681-1699.
-
(2011)
Physiol. Meas.
, vol.32
, pp. 1681-1699
-
-
Makowiec, D.1
Rynkiewicz, A.2
Wdowczyk-Szulc, J.3
Zarczyriska-Buchowiecka, M.4
Galaska, R.5
Kryszewski, S.6
-
28
-
-
64149118614
-
Multireso-lution analysis of fluctuations in non-stationary time series through discrete wavelets
-
Manimaran, P., Panigrahi, P. K., and Parikh, J. C. (2009). Multireso-lution analysis of fluctuations in non-stationary time series through discrete wavelets. Physica A 388, 2306-2314.
-
(2009)
Physica A
, vol.388
, pp. 2306-2314
-
-
Manimaran, P.1
Panigrahi, P.K.2
Parikh, J.C.3
-
29
-
-
12044251142
-
Wavelets and multifractal formalism for singular signals: application to turbulence data
-
Muzy, J. F., Bacry, E., and Arneodo, A. (1991). Wavelets and multifractal formalism for singular signals: application to turbulence data. Phys. Rev. Lett. 67,3515-3518.
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 3515-3518
-
-
Muzy, J.F.1
Bacry, E.2
Arneodo, A.3
-
30
-
-
33746092102
-
Wavelet versus detrended fluctuation analysis of multifractal structures
-
Oswiecimka, P., Kwapien, J., and Drozdz, S. (2006). Wavelet versus detrended fluctuation analysis of multifractal structures. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 016103.
-
(2006)
Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
, vol.74
, pp. 016103
-
-
Oswiecimka, P.1
Kwapien, J.2
Drozdz, S.3
-
31
-
-
0028450227
-
Cancellous bone structure analysis using image analysis
-
Parkinson, I., and Fazzalari, N. (1994). Cancellous bone structure analysis using image analysis. Australas. Phys. Eng. Sci. Med. 470, 64-70.
-
(1994)
Australas. Phys. Eng. Sci. Med.
, vol.470
, pp. 64-70
-
-
Parkinson, I.1
Fazzalari, N.2
-
32
-
-
0029434863
-
Quantification of scaling exponents and crossover phenomena in nonstationarytime series
-
Peng, C. K., Havelin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationarytime series. Chaos 5, 82-89.
-
(1995)
Chaos
, vol.5
, pp. 82-89
-
-
Peng, C.K.1
Havelin, S.2
Stanley, H.E.3
Goldberger, A.L.4
-
33
-
-
0035990852
-
Quantifying fractal dynamics of human respiration: age and gender effects
-
Peng, C. K., Mietus, J. E., Liu, Y., Lee, C., Hausdorff, J. M., Stanley, H. E., Goldberger, A. L., and Lipsitz, L. A. (2002). Quantifying fractal dynamics of human respiration: age and gender effects. Ann. Biomed. Eng. 30, 683-692.
-
(2002)
Ann. Biomed. Eng.
, vol.30
, pp. 683-692
-
-
Peng, C.K.1
Mietus, J.E.2
Liu, Y.3
Lee, C.4
Hausdorff, J.M.5
Stanley, H.E.6
Goldberger, A.L.7
Lipsitz, L.A.8
-
35
-
-
0141732286
-
Hölder exponent spectra for human gait
-
Scafetta, N., Griffin, L., and West, B. J. (2003). Hölder exponent spectra for human gait. Physica A 328, 561-583.
-
(2003)
Physica A
, vol.328
, pp. 561-583
-
-
Scafetta, N.1
Griffin, L.2
West, B.J.3
-
36
-
-
67349181735
-
Wavelet leaders: a new method to estimate the multifractal singularity spectra
-
Serrano, E., and Figliola, A. (2009). Wavelet leaders: a new method to estimate the multifractal singularity spectra. Physica A 388, 2793-2805.
-
(2009)
Physica A
, vol.388
, pp. 2793-2805
-
-
Serrano, E.1
Figliola, A.2
-
37
-
-
0033054145
-
Insights from the study of the heart rate variability
-
Stein, P., and Kleiger, E. (1999). Insights from the study of the heart rate variability. Ann. Rev. Med. 50, 249-261.
-
(1999)
Ann. Rev. Med.
, vol.50
, pp. 249-261
-
-
Stein, P.1
Kleiger, E.2
-
38
-
-
0042962875
-
Determining local singularity strengths and their spectra with the wavelet transform
-
Struzik, Z. R. (2000). Determining local singularity strengths and their spectra with the wavelet transform. Fractals 8,163-179.
-
(2000)
Fractals
, vol.8
, pp. 163-179
-
-
Struzik, Z.R.1
-
39
-
-
50949119700
-
Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance
-
Suckling, J., Wink, A. M., Bernard, F. A., Barnes, A., and Bullmore, E. (2008). Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J. Neurosci. Methods 174,292-300.
-
(2008)
J. Neurosci. Methods
, vol.174
, pp. 292-300
-
-
Suckling, J.1
Wink, A.M.2
Bernard, F.A.3
Barnes, A.4
Bullmore, E.5
-
40
-
-
33748210836
-
Numerical methods for the estimation of the estimation of the multifractal singularity spectra on sampled data: a comparative study
-
Turiel, A., Perez-Vicente, C. J., and Grazzini, J. (2006). Numerical methods for the estimation of the estimation of the multifractal singularity spectra on sampled data: a comparative study. J. Comp. Phys. 216, 362-390.
-
(2006)
J. Comp. Phys.
, vol.216
, pp. 362-390
-
-
Turiel, A.1
Perez-Vicente, C.J.2
Grazzini, J.3
-
41
-
-
33845347889
-
Multifractal analysis of ventricular fibrillation and ventricular tachycardia
-
Wang, G., Huang, H., Xie, H., Wang, Z., and Hu, X. (2007). Multifractal analysis of ventricular fibrillation and ventricular tachycardia. Med. Eng. Phys. 29, 375-379.
-
(2007)
Med. Eng. Phys.
, vol.29
, pp. 375-379
-
-
Wang, G.1
Huang, H.2
Xie, H.3
Wang, Z.4
Hu, X.5
-
42
-
-
0026348707
-
Fractal geometry: a design principle for living organisms
-
Weibel, E. R. (1991). Fractal geometry: a design principle for living organisms. Am. J. Physiol. 261, 361-369.
-
(1991)
Am. J. Physiol.
, vol.261
, pp. 361-369
-
-
Weibel, E.R.1
-
44
-
-
24044492925
-
Multiplicative multifractal modeling and discrimination of human neuronal activity
-
Zheng, Y., Gao, J. B., Sanchez, J. C., Principe, J. C., and Okun, M. S. (2005). Multiplicative multifractal modeling and discrimination of human neuronal activity. Phys. Lett. A 344, 253-264.
-
(2005)
Phys. Lett. A
, vol.344
, pp. 253-264
-
-
Zheng, Y.1
Gao, J.B.2
Sanchez, J.C.3
Principe, J.C.4
Okun, M.S.5
|