메뉴 건너뛰기




Volumn 10 SIST, Issue , 2011, Pages 567-575

Predicting of the short term wind speed by using a real valued genetic algorithm based least squared support vector machine

Author keywords

Genetic algorithm (GA); Least squared support vector machine (LS SVM); Short term wind prediction; Support vector machines (SVMs); Wind power; Wind speed forecasting

Indexed keywords

ALTERNATIVE ENERGY; ALTERNATIVE ENERGY SOURCE; DATA SETS; EMPIRICAL STUDIES; HUMAN BEING; LEAST SQUARED SUPPORT VECTOR MACHINE (LS-SVM); POSSIBLE FUTURES; PREDICTION ERRORS; REAL-VALUED GENETIC ALGORITHM; SHORT TERM; TIME SPAN; TURBINE SPEED; WIND APPLICATIONS; WIND FARM; WIND FORECASTS; WIND PREDICTION; WIND SPEED; WIND SPEED FORECASTING;

EID: 84866334911     PISSN: 21903018     EISSN: 21903026     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-642-22194-1_56     Document Type: Conference Paper
Times cited : (6)

References (24)
  • 2
    • 38349108557 scopus 로고    scopus 로고
    • Analysis of wind power generation and prediction using ANN: A case study
    • Carolin Mabel, M., Fernandez, E.: Analysis of wind power generation and prediction using ANN: A case study. Renewable Energy 33(5), 986-992 (2008)
    • (2008) Renewable Energy , vol.33 , Issue.5 , pp. 986-992
    • Carolin Mabel, M.1    Fernandez, E.2
  • 3
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    • Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renewable Energy 36(4), 1245-1251 (2011)
    • (2011) Renewable Energy , vol.36 , Issue.4 , pp. 1245-1251
    • Catalao, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 6
    • 77951487727 scopus 로고    scopus 로고
    • State-of-the-art on methods and software tools for short-term prediction of wind energy production
    • Madrid
    • Giebel, G., Landberg, L., Kariniotakis, G., Brownsword, R.: State-of-the-art on methods and software tools for short-term prediction of wind energy production. In: European Wind Energy Conference, Madrid (2003)
    • (2003) European Wind Energy Conference
    • Giebel, G.1    Landberg, L.2    Kariniotakis, G.3    Brownsword, R.4
  • 9
    • 0031146983 scopus 로고    scopus 로고
    • Real-valued genetic algorithms for fuzzy grey prediction system
    • doi:10.1016/s0165-0114(96)00011-5
    • Huang, Y.-P., Huang, C.-H.: Real-valued genetic algorithms for fuzzy grey prediction system. Fuzzy Sets and Systems 87(3), 265-276 (1997), doi:10.1016/s0165-0114(96)00011-5
    • (1997) Fuzzy Sets and Systems , vol.87 , Issue.3 , pp. 265-276
    • Huang, Y.-P.1    Huang, C.-H.2
  • 10
  • 16
    • 33847772232 scopus 로고    scopus 로고
    • Harmonization of renewable electricity feed-in laws in the European Union
    • Muñoz, M., Oschmann, V., David Tabara, J.: Harmonization of renewable electricity feed-in laws in the European Union. Energy Policy 35(5), 3104-3114 (2007)
    • (2007) Energy Policy , vol.35 , Issue.5 , pp. 3104-3114
    • Muñoz, M.1    Oschmann, V.2    David Tabara, J.3
  • 17
    • 0034286972 scopus 로고    scopus 로고
    • A comparison of various forecasting techniques applied to mean hourly wind speed time series
    • Sfetsos, A.: A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renewable Energy 21(1), 23-35 (2000)
    • (2000) Renewable Energy , vol.21 , Issue.1 , pp. 23-35
    • Sfetsos, A.1
  • 19
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. Neural Processing Letters 9(3), 293-300 (1999)
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 22
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • Wu, C.-H., Tzeng, G.-H., Goo, Y.-J., Fang, W.-C: A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications 32(2), 397-408 (2007)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.