-
4
-
-
73549104572
-
-
J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, Nature Photon. 4, 37 (2010).
-
(2010)
Nature Photon.
, vol.4
, pp. 37
-
-
Levy, J.S.1
Gondarenko, A.2
Foster, M.A.3
Turner-Foster, A.C.4
Gaeta, A.L.5
Lipson, M.6
-
5
-
-
57149109378
-
-
M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, Nature Photon. 2, 737 (2008).
-
(2008)
Nature Photon.
, vol.2
, pp. 737
-
-
Ferrera, M.1
Razzari, L.2
Duchesne, D.3
Morandotti, R.4
Yang, Z.5
Liscidini, M.6
Sipe, J.E.7
Chu, S.8
Little, B.E.9
Moss, D.J.10
-
6
-
-
73549087405
-
-
L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, Nature Photon. 4, 41 (2010).
-
(2010)
Nature Photon.
, vol.4
, pp. 41
-
-
Razzari, L.1
Duchesne, D.2
Ferrera, M.3
Morandotti, R.4
Chu, S.5
Little, B.E.6
Moss, D.J.7
-
7
-
-
0001655211
-
-
P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, Opt. Lett. 25, 554 (2000).
-
(2000)
Opt. Lett.
, vol.25
, pp. 554
-
-
Absil, P.P.1
Hryniewicz, J.V.2
Little, B.E.3
Cho, P.S.4
Wilson, R.A.5
Joneckis, L.G.6
Ho, P.-T.7
-
8
-
-
41649097376
-
-
A. Turner, M. Foster, A. Gaeta, and M. Lipson, Opt. Express 16, 4881 (2008).
-
(2008)
Opt. Express
, vol.16
, pp. 4881
-
-
Turner, A.1
Foster, M.2
Gaeta, A.3
Lipson, M.4
-
9
-
-
70349196372
-
-
S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, Opt. Express 17, 16558 (2009).
-
(2009)
Opt. Express
, vol.17
, pp. 16558
-
-
Clemmen, S.1
Phan Huy, K.2
Bogaerts, W.3
Baets, R.G.4
Emplit, Ph.5
Massar, S.6
-
11
-
-
77956672212
-
-
L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, Opt. Lett. 35, 3006 (2010).
-
(2010)
Opt. Lett.
, vol.35
, pp. 3006
-
-
Helt, L.G.1
Yang, Z.2
Liscidini, M.3
Sipe, J.E.4
-
13
-
-
84893889171
-
-
Unlike in Ref. [12], here we assume losses in the ring resonator. At the critical coupling, the on-resonance field enhancement in the ring resonator is FE ≃ 2Qvg ω0L q, with ω0 the resonant frequency (see also Ref. [7]
-
Unlike in Ref. [12], here we assume losses in the ring resonator. At the critical coupling, the on-resonance field enhancement in the ring resonator is FE ≃ 2Qvg ω0L q, with ω0 the resonant frequency (see also Ref. [7]).
-
-
-
-
15
-
-
2942741301
-
-
M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, Opt. Express 12, 1551 (2004).
-
(2004)
Opt. Express
, vol.12
, pp. 1551
-
-
Notomi, M.1
Shinya, A.2
Mitsugi, S.3
Kuramochi, E.4
Ryu, H.-Y.5
-
16
-
-
84893894008
-
-
The variation of the quality factor between the signal, pump, and idler resonances is below 2% for all four rings. The value we have taken for the quality factor in the equations is an average between the Qs of the three resonances
-
The variation of the quality factor between the signal, pump, and idler resonances is below 2% for all four rings. The value we have taken for the quality factor in the equations is an average between the Qs of the three resonances.
-
-
-
-
17
-
-
84893878820
-
-
We Verified That The Quadratic Trend Is Maintained Up To The Maximum Available Pump Power If The Pump Wavelength Is Retuned To Compensate For The Thermo-optic Redshift Of The Resonances For Pp > 2 MW. This Implies That Q Degradation Due To Free Carrier Absorption Can Be Neglected For All The Investigated Pp. The Data Of Fig. 2 Are Taken With A Fixed Value Of The Pump Energy
-
We verified that the quadratic trend is maintained up to the maximum available pump power if the pump wavelength is retuned to compensate for the thermo-optic redshift of the resonances for Pp > 2 mW. This implies that Q degradation due to free carrier absorption can be neglected for all the investigated Pp. The data of Fig. 2 are taken with a fixed value of the pump energy.
-
-
-
|