메뉴 건너뛰기




Volumn 122, Issue 12, 2012, Pages 3980-4004

On non-markovian forward-backward SDEs and backward stochastic PDEs

Author keywords

Backward stochastic partial differential equations; Forward backward stochastic differential equations; Nonlinear stochastic Feynman Kac formula

Indexed keywords

COMPARISON THEOREM; EQUIVALENCE RELATIONSHIP; FEYNMAN-KAC FORMULA; FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS; FOUR STEP SCHEME; NON-MARKOVIAN; QUASI-LINEAR; RANDOM COEFFICIENTS; RANDOM FIELDS; SOBOLEV; STOCHASTIC PARTIAL DIFFERENTIAL EQUATION; STOCHASTIC PDES; WELLPOSEDNESS;

EID: 84866178050     PISSN: 03044149     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spa.2012.08.002     Document Type: Article
Times cited : (51)

References (26)
  • 1
    • 0000580597 scopus 로고
    • Backward-forward stochastic differential equations
    • F. Antonelli Backward-forward stochastic differential equations Ann. Appl. Probab. 3 3 1993 777 793
    • (1993) Ann. Appl. Probab. , vol.3 , Issue.3 , pp. 777-793
    • Antonelli, F.1
  • 4
    • 0030510296 scopus 로고    scopus 로고
    • Hedging options for a large investor and forward-backward SDE's
    • J. Cvitanic, and J. Ma Hedging options for a large investor and forward-backward SDE's Ann. Appl. Probab. 6 2 1996 370 398
    • (1996) Ann. Appl. Probab. , vol.6 , Issue.2 , pp. 370-398
    • Cvitanic, J.1    Ma, J.2
  • 5
    • 0036233502 scopus 로고    scopus 로고
    • On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case
    • F. Delarue On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case Stochastic Process. Appl. 99 2002 209 286
    • (2002) Stochastic Process. Appl. , vol.99 , pp. 209-286
    • Delarue, F.1
  • 6
    • 84862760535 scopus 로고    scopus 로고
    • Lp theory for super-parabolic backward stochastic partial differential equations in the whole space
    • Lp theory for super-parabolic backward stochastic partial differential equations in the whole space Appl. Math. Optim. 65 2 2012 175 219
    • (2012) Appl. Math. Optim. , vol.65 , Issue.2 , pp. 175-219
    • Du, K.1    Qiu, J.2    Tang, S.3
  • 8
    • 74249083734 scopus 로고    scopus 로고
    • Portfolio Research Paper 2009-04, Bloomberg
    • B. Dupire, Functional Itô calculus, Portfolio Research Paper 2009-04, Bloomberg, 2009.
    • (2009) Functional Itô Calculus
    • Dupire, B.1
  • 9
    • 2542501546 scopus 로고    scopus 로고
    • Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with continuous coefficients
    • Y. Hu, and J. Ma Nonlinear Feynman-Kac formula and discrete-functional- type BSDEs with continuous coefficients Stochastic Process. Appl. 112 2004 23 51
    • (2004) Stochastic Process. Appl. , vol.112 , pp. 23-51
    • Hu, Y.1    Ma, J.2
  • 10
    • 0036022589 scopus 로고    scopus 로고
    • On semi-linear, degenerate backward stochastic partial differential equations
    • Y. Hu, J. Ma, and J. Yong On semi-linear, degenerate backward stochastic partial differential equations Probab. Theory Related Fields 123 2002 381 411
    • (2002) Probab. Theory Related Fields , vol.123 , pp. 381-411
    • Hu, Y.1    Ma, J.2    Yong, J.3
  • 11
    • 51249168165 scopus 로고
    • Solution of forward-backward stochastic differential equations
    • Y. Hu, and S. Peng Solution of forward-backward stochastic differential equations Prob. Theory Related Fields 103 1995 273 283
    • (1995) Prob. Theory Related Fields , vol.103 , pp. 273-283
    • Hu, Y.1    Peng, S.2
  • 12
    • 0002472798 scopus 로고
    • Stochastic partial differential equations and diffusion processes
    • N.V. Krylov, and B.L. Rozovskii Stochastic partial differential equations and diffusion processes Uspekhi, Mat. Nauk 37 6 1982 75 95
    • (1982) Uspekhi, Mat. Nauk , vol.37 , Issue.6 , pp. 75-95
    • Krylov, N.V.1    Rozovskii, B.L.2
  • 13
    • 0344891803 scopus 로고
    • Solving forward-backward stochastic differential equations explicitly - A four step scheme
    • J. Ma, P. Protter, and J. Yong Solving forward-backward stochastic differential equations explicitly - a four step scheme Probab. Theory Related Fields 98 1994 339 359
    • (1994) Probab. Theory Related Fields , vol.98 , pp. 339-359
    • Ma, J.1    Protter, P.2    Yong, J.3
  • 15
    • 0031256310 scopus 로고    scopus 로고
    • Adapted solution of a degenerate backward SPDE, with applications
    • J. Ma, and J. Yong Adapted solution of a degenerate backward SPDE, with applications Stochastic Process. Appl. 70 1997 59 84
    • (1997) Stochastic Process. Appl. , vol.70 , pp. 59-84
    • Ma, J.1    Yong, J.2
  • 16
    • 0033076641 scopus 로고    scopus 로고
    • On linear, degenerate backward stochastic partial differential equations
    • J. Ma, and J. Yong On linear, degenerate backward stochastic partial differential equations Probab. Theory Related Fields 113 1999 135 170
    • (1999) Probab. Theory Related Fields , vol.113 , pp. 135-170
    • Ma, J.1    Yong, J.2
  • 19
    • 0018768309 scopus 로고
    • Stochastic partial differential equations and filtering of diffusion processes
    • E. Pardoux Stochastic partial differential equations and filtering of diffusion processes Stochastics 3 1979 127 167
    • (1979) Stochastics , vol.3 , pp. 127-167
    • Pardoux, E.1
  • 20
    • 0025262967 scopus 로고
    • Adapted solutions of backward stochastic equations
    • E. Pardoux, and S. Peng Adapted solutions of backward stochastic equations Systems Control Lett. 14 1990 55 61
    • (1990) Systems Control Lett. , vol.14 , pp. 55-61
    • Pardoux, E.1    Peng, S.2
  • 21
    • 0000268709 scopus 로고
    • Backward stochastic differential equations and quasilinear parabolic partial differential equations
    • Springer
    • E. Pardoux, and S. Peng Backward stochastic differential equations and quasilinear parabolic partial differential equations Lecture Notes in CIS vol. 176 1992 Springer 200 217
    • (1992) Lecture Notes in CIS , vol.176 , pp. 200-217
    • Pardoux, E.1    Peng, S.2
  • 22
    • 0033463544 scopus 로고    scopus 로고
    • Forward-backward stochastic differential equations and quasilinear parabolic PDEs
    • E. Pardoux, and S. Tang Forward-backward stochastic differential equations and quasilinear parabolic PDEs Probab. Theory Related Fields 114 2 1999 123 150
    • (1999) Probab. Theory Related Fields , vol.114 , Issue.2 , pp. 123-150
    • Pardoux, E.1    Tang, S.2
  • 23
    • 0032634560 scopus 로고    scopus 로고
    • Fully coupled forward-backward stochastic differential equations and applications to optimal control
    • S. Peng, and Z. Wu Fully coupled forward-backward stochastic differential equations and applications to optimal control SIAM J. Control Optim. 37 3 1999 825 843
    • (1999) SIAM J. Control Optim. , vol.37 , Issue.3 , pp. 825-843
    • Peng, S.1    Wu, Z.2
  • 24
    • 58549114488 scopus 로고    scopus 로고
    • Comparison theorems for forward backward SDEs
    • Z. Wu, and M. Xu Comparison theorems for forward backward SDEs Statist. Probab. Lett. 79 4 2009 426 435
    • (2009) Statist. Probab. Lett. , vol.79 , Issue.4 , pp. 426-435
    • Wu, Z.1    Xu, M.2
  • 25
    • 0041022466 scopus 로고    scopus 로고
    • Finding adapted solutions of forward-backward stochastic differential equations: Method of continuation
    • J. Yong Finding adapted solutions of forward-backward stochastic differential equations: method of continuation Probab. Theory Related Fields 107 4 1997 537 572
    • (1997) Probab. Theory Related Fields , vol.107 , Issue.4 , pp. 537-572
    • Yong, J.1
  • 26
    • 33745324985 scopus 로고    scopus 로고
    • The wellposedness of FBSDEs
    • (electronic)
    • J. Zhang The wellposedness of FBSDEs Discrete Contin. Dyn. Syst. Ser. B 6 4 2006 927 940 (electronic)
    • (2006) Discrete Contin. Dyn. Syst. Ser. B , vol.6 , Issue.4 , pp. 927-940
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.