-
3
-
-
78649914423
-
Performance of recommender algorithms on top-n recommendation tasks
-
New York, NY, USA, ACM
-
P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the fourth ACM conference on Recommender systems, RecSys '10, pages 39-46, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys '10
, pp. 39-46
-
-
Cremonesi, P.1
Koren, Y.2
Turrin, R.3
-
4
-
-
3042821101
-
Item-based top-n recommendation algorithms
-
Jan.
-
M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst., 22(1):143-177, Jan. 2004.
-
(2004)
ACM Trans. Inf. Syst.
, vol.22
, Issue.1
, pp. 143-177
-
-
Deshpande, M.1
Karypis, G.2
-
6
-
-
84976668719
-
Using collaborative filtering to weave an information tapestry
-
Dec.
-
D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Commun. ACM, 35(12):61-70, Dec. 1992.
-
(1992)
Commun. ACM
, vol.35
, Issue.12
, pp. 61-70
-
-
Goldberg, D.1
Nichols, D.2
Oki, B.M.3
Terry, D.4
-
7
-
-
0002549585
-
Eigentaste: A constant time collaborative filtering algorithm
-
July
-
K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Inf. Retr., 4(2):133-151, July 2001.
-
(2001)
Inf. Retr.
, vol.4
, Issue.2
, pp. 133-151
-
-
Goldberg, K.1
Roeder, T.2
Gupta, D.3
Perkins, C.4
-
8
-
-
65449121157
-
Factorization meets the neighborhood: A multifaceted collaborative filtering model
-
New York, NY, USA, ACM
-
Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '08, pages 426-434, New York, NY, USA, 2008. ACM.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08
, pp. 426-434
-
-
Koren, Y.1
-
9
-
-
0037252945
-
Amazon.com recommendations: Item-to-item collaborative filtering
-
G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7:76-80, 2003.
-
(2003)
IEEE Internet Computing
, vol.7
, pp. 76-80
-
-
Linden, G.1
Smith, B.2
York, J.3
-
10
-
-
84869147060
-
Being accurate is not enough: How accuracy metrics have hurt recommender systems
-
New York, NY, USA, ACM
-
S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how accuracy metrics have hurt recommender systems. In CHI '06 extended abstracts on Human factors in computing systems, CHI EA '06, pages 1097-1101, New York, NY, USA, 2006. ACM.
-
(2006)
CHI '06 Extended Abstracts on Human Factors in Computing Systems, CHI EA '06
, pp. 1097-1101
-
-
McNee, S.M.1
Riedl, J.2
Konstan, J.A.3
-
12
-
-
57949113756
-
Improving regularized singular value decomposition for collaborative filtering
-
A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In Proceedings of KDD Cup and Workshop, pages 39-42, 2007.
-
(2007)
Proceedings of KDD Cup and Workshop
, pp. 39-42
-
-
Paterek, A.1
-
14
-
-
85052617391
-
Item-based collaborative filtering recommendation algorithms
-
New York, NY, USA, ACM
-
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, WWW '01, pages 285-295, New York, NY, USA, 2001. ACM.
-
(2001)
Proceedings of the 10th International Conference on World Wide Web, WWW '01
, pp. 285-295
-
-
Sarwar, B.1
Karypis, G.2
Konstan, J.3
Riedl, J.4
|