메뉴 건너뛰기




Volumn 8, Issue 3, 2012, Pages 1748-1756

Bees algorithm for feature selection in network anomaly detection

Author keywords

Anomaly detection; Bees algorithm; Feature selection; Ids

Indexed keywords


EID: 84866000333     PISSN: 1816157X     EISSN: 1819544X     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (41)

References (28)
  • 3
    • 19944364877 scopus 로고    scopus 로고
    • Feature Deduction and Ensemble Design of Intrusion Detection Systems
    • Chebrolu, S., A. Abraham, J.P. Thomas, 2005. Feature Deduction and Ensemble Design of Intrusion Detection Systems. Journal of Computers and Security, 24(4): 295-307.
    • (2005) Journal of Computers and Security , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 6
    • 0037282635 scopus 로고    scopus 로고
    • Efficient anomaly detection by modeling privilege flows using hidden Markov model
    • Cho, S.B., H.J. Park, 2003. Efficient anomaly detection by modeling privilege flows using hidden Markov model. Computers & Security, 22(1): 45-55.
    • (2003) Computers & Security , vol.22 , Issue.1 , pp. 45-55
    • Cho, S.B.1    Park, H.J.2
  • 8
    • 46749114815 scopus 로고    scopus 로고
    • Fuzzy Vector Quantization for Network Intrusion Detection
    • IEEE International Conference on
    • Dat, T., M. Wanli, D. Sharma, N. Thien, 2007. Fuzzy Vector Quantization for Network Intrusion Detection. Granular Computing, 2007. GRC 2007. IEEE International Conference on, pp: 566-566.
    • (2007) Granular Computing, 2007. GRC 2007 , pp. 566-1566
    • Dat, T.1    Wanli, M.2    Sharma, D.3    Thien, N.4
  • 10
    • 84857594993 scopus 로고    scopus 로고
    • ID-SOMGA: A Self Organising Migrating Genetic Algorithm-Based Solution for Intrusion Detection
    • Folorunso, O., O.O. Akande, A.O. Ogunde, O.R. Vincent, 2010. "ID-SOMGA: A Self Organising Migrating Genetic Algorithm-Based Solution for Intrusion Detection". Computer and Information Science, 3(4): 80-92.
    • (2010) Computer and Information Science , vol.3 , Issue.4 , pp. 80-92
    • Folorunso, O.1    Akande, O.O.2    Ogunde, A.O.3    Vincent, O.R.4
  • 11
    • 28444441282 scopus 로고    scopus 로고
    • Ant colony optimization based network intrusion feature selection and detection, Machine Learning and Cybernetics
    • Gao, H.H., H.H. Yang, X.Y. Wang, 2005. Ant colony optimization based network intrusion feature selection and detection, Machine Learning and Cybernetics, Proceedings of 2005 International Conference on, 6: 3871-3875.
    • (2005) Proceedings of 2005 International Conference on , vol.6 , pp. 3871-3875
    • Gao, H.H.1    Yang, H.H.2    Wang, X.Y.3
  • 12
    • 0242637092 scopus 로고    scopus 로고
    • Detecting intrusion with rule-based integration of multiple models
    • Han, S.J., S.B. Cho, 2003. Detecting intrusion with rule-based integration of multiple models. Computers & Security, 22(7): 613-623.
    • (2003) Computers & Security , vol.22 , Issue.7 , pp. 613-623
    • Han, S.J.1    Cho, S.B.2
  • 13
    • 84865985216 scopus 로고    scopus 로고
    • http://kdd.ics.uci.edu/database/kddcup99/kddcup99.html.
  • 15
    • 84865969854 scopus 로고    scopus 로고
    • A comparative study of anomaly detection schemes in network intrusion detection, hlm
    • Lazarevic, A., L. Ertoz, V. Kumar, A. Ozgur, J. Srivastava, 2003. A comparative study of anomaly detection schemes in network intrusion detection, hlm.
    • (2003)
    • Lazarevic, A.1    Ertoz, L.2    Kumar, V.3    Ozgur, A.4    Srivastava, J.5
  • 16
    • 0034300835 scopus 로고    scopus 로고
    • Improving intrusion detection performance using keyword selection and neural networks
    • Lippmann, R.P., R.K. Cunningham, 2000. Improving intrusion detection performance using keyword selection and neural networks. Computer Networks, 34(4): 597-603.
    • (2000) Computer Networks , vol.34 , Issue.4 , pp. 597-603
    • Lippmann, R.P.1    Cunningham, R.K.2
  • 18
    • 24044475779 scopus 로고    scopus 로고
    • Intrusion detection using ensemble of soft computing paradigms
    • Intelligent systems design and applications, advances in soft computing. Germany: Springer Verlag
    • Mukkamala, S., A. Sung, A. Abraham, 2003. Intrusion detection using ensemble of soft computing paradigms. In: Third international conference on intelligent systems design and applications. Intelligent systems design and applications, advances in soft computing. Germany: Springer Verlag, pp: 239-48.
    • (2003) Third international conference on intelligent systems design and applications , pp. 239-248
    • Mukkamala, S.1    Sung, A.2    Abraham, A.3
  • 23
    • 84865986724 scopus 로고    scopus 로고
    • The feature selection and intrusion detection problems
    • Proceedings of Third SIAM Conference on Data Mining, San Francisco pp
    • Sung, A., S. Mukkamala, 2005. The feature selection and intrusion detection problems. Advances in Computer Science-ASIAN 2004.Proceedings of Third SIAM Conference on Data Mining, San Francisco, pp: 3192-3193.
    • (2005) Advances in Computer Science-ASIAN 2004 , pp. 3192-3193
    • Sung, A.1    Mukkamala, S.2
  • 26
    • 34547576241 scopus 로고    scopus 로고
    • Feature Selection Using Rough Set in Intrusion Detection
    • 2006 IEEE Region 10 Conference
    • Zainal, A., M.A. Maarof, S.M. Shamsuddin, 2006. Feature Selection Using Rough Set in Intrusion Detection. TENCON 2006. 2006 IEEE Region 10 Conference, pp: 1-4.
    • (2006) TENCON 2006 , pp. 1-4
    • Zainal, A.1    Maarof, M.A.2    Shamsuddin, S.M.3
  • 28
    • 70449445893 scopus 로고    scopus 로고
    • Application of support vector machines on network abnormal intrusion detection
    • Zhang Kun, Cao Hong-Xin, Yan Han, 2006. Application of support vector machines on network abnormal intrusion detection. Application Research of computers, 5: 98-100.
    • (2006) Application Research of computers , vol.5 , pp. 98-100
    • Kun, Z.1    Hong-Xin, C.2    Han, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.