-
1
-
-
34250305402
-
Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics
-
Pierpont M.E., Basson C.T., Benson D.W., et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007, 115:3015-3038.
-
(2007)
Circulation
, vol.115
, pp. 3015-3038
-
-
Pierpont, M.E.1
Basson, C.T.2
Benson, D.W.3
-
2
-
-
78651515983
-
The changing epidemiology of congenital heart disease
-
van der Bom T., Zomer A.C., Zwinderman A.H., Meijboom F.J., Bouma B.J., Mulder B.J. The changing epidemiology of congenital heart disease. Nat. Rev. Cardiol. 2011, 8:50-60.
-
(2011)
Nat. Rev. Cardiol.
, vol.8
, pp. 50-60
-
-
van der Bom, T.1
Zomer, A.C.2
Zwinderman, A.H.3
Meijboom, F.J.4
Bouma, B.J.5
Mulder, B.J.6
-
4
-
-
33644680809
-
Building the mammalian heart from two sources of myocardial cells
-
Buckingham M., Meilhac S., Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 2005, 6:826-835.
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 826-835
-
-
Buckingham, M.1
Meilhac, S.2
Zaffran, S.3
-
5
-
-
33748621746
-
Making or breaking the heart: from lineage determination to morphogenesis
-
Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 2006, 126:1037-1048.
-
(2006)
Cell
, vol.126
, pp. 1037-1048
-
-
Srivastava, D.1
-
6
-
-
33847297490
-
Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation
-
Dunwoodie S.L. Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation. Semin. Cell Dev. Biol. 2007, 18:54-66.
-
(2007)
Semin. Cell Dev. Biol.
, vol.18
, pp. 54-66
-
-
Dunwoodie, S.L.1
-
7
-
-
65449133141
-
Signaling pathways controlling second heart field development
-
Rochais F., Mesbah K., Kelly R.G. Signaling pathways controlling second heart field development. Circ. Res. 2009, 104:933-942.
-
(2009)
Circ. Res.
, vol.104
, pp. 933-942
-
-
Rochais, F.1
Mesbah, K.2
Kelly, R.G.3
-
8
-
-
39749191367
-
The developmental genetics of congenital heart disease
-
Bruneau B.G. The developmental genetics of congenital heart disease. Nature 2008, 451:943-948.
-
(2008)
Nature
, vol.451
, pp. 943-948
-
-
Bruneau, B.G.1
-
9
-
-
24644448245
-
Haploinsufficiency of the cardiac transcription factor Nkx2-5 variably affects the expression of putative target genes
-
Jay P.Y., Rozhitskaya O., Tarnavski O., et al. Haploinsufficiency of the cardiac transcription factor Nkx2-5 variably affects the expression of putative target genes. FASEB J. 2005, 19:1495-1497.
-
(2005)
FASEB J.
, vol.19
, pp. 1495-1497
-
-
Jay, P.Y.1
Rozhitskaya, O.2
Tarnavski, O.3
-
10
-
-
44949230354
-
A gain-of-function TBX5 mutation is associated with a typical Holt-Oram syndrome and paroxysmal a trial fibrillation
-
Postma A.V., van de Meerakker J.B., Mathijssen I.B., et al. A gain-of-function TBX5 mutation is associated with a typical Holt-Oram syndrome and paroxysmal a trial fibrillation. Circ. Res. 2008, 102:1433-1442.
-
(2008)
Circ. Res.
, vol.102
, pp. 1433-1442
-
-
Postma, A.V.1
van de Meerakker, J.B.2
Mathijssen, I.B.3
-
11
-
-
4644358238
-
GATA4 is a dosage-sensitive regulator of cardiac morphogenesis
-
Pu W.T., Ishiwata T., Juraszek A.L., Ma Q., Izumo S. GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev. Biol. 2004, 275:235-244.
-
(2004)
Dev. Biol.
, vol.275
, pp. 235-244
-
-
Pu, W.T.1
Ishiwata, T.2
Juraszek, A.L.3
Ma, Q.4
Izumo, S.5
-
12
-
-
84878259638
-
-
Genetic and Functional Analysis of the NKX2-5 Gene Promoter in Patients with Ventricular Septal Defects, Pediatr. Cardiol, in press.
-
S. Pang, J. Shan, Y. Qiao, et al., Genetic and Functional Analysis of the NKX2-5 Gene Promoter in Patients with Ventricular Septal Defects, Pediatr. Cardiol, 2012, in press.
-
(2012)
-
-
Pang, S.1
Shan, J.2
Qiao, Y.3
-
13
-
-
84860338564
-
Genetic analysis of the TBX20 gene promoter region in patients with ventricular septal defects
-
Qiao Y., Wanyan H., Xing Q., et al. Genetic analysis of the TBX20 gene promoter region in patients with ventricular septal defects. Gene 2012, 500:28-31.
-
(2012)
Gene
, vol.500
, pp. 28-31
-
-
Qiao, Y.1
Wanyan, H.2
Xing, Q.3
-
14
-
-
85171937406
-
-
Functional analysis of the novel sequence variants within TBX5 gene promoter in patients with ventricular septal defects, Transl. Res, in press.
-
J. Shan, S. Pang, Y. Qiao, et al., Functional analysis of the novel sequence variants within TBX5 gene promoter in patients with ventricular septal defects, Transl. Res, 2012, in press.
-
(2012)
-
-
Shan, J.1
Pang, S.2
Qiao, Y.3
-
15
-
-
84859726679
-
Genetic analysis of the promoter region of the GATA4 gene in patients with ventricular septal defects
-
Wu G., Shan J., Pang S., Wei X., Zhang H., Yan B. Genetic analysis of the promoter region of the GATA4 gene in patients with ventricular septal defects. Transl. Res. 2012, 159:376-382.
-
(2012)
Transl. Res.
, vol.159
, pp. 376-382
-
-
Wu, G.1
Shan, J.2
Pang, S.3
Wei, X.4
Zhang, H.5
Yan, B.6
-
16
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S., Armstrong C.M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
17
-
-
67949102053
-
Recent progress in the biology and physiology of sirtuins
-
Finkel T., Deng C.X., Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009, 460:587-591.
-
(2009)
Nature
, vol.460
, pp. 587-591
-
-
Finkel, T.1
Deng, C.X.2
Mostoslavsky, R.3
-
18
-
-
77949887506
-
Mammalian sirtuins: biological insights and disease relevance
-
Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
-
(2010)
Annu. Rev. Pathol.
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
19
-
-
79961162915
-
Cellular and molecular effects of sirtuins in health and disease
-
Horio Y., Hayashi T., Kuno A., Kunimoto R. Cellular and molecular effects of sirtuins in health and disease. Clin. Sci. (Lond) 2011, 121:191-203.
-
(2011)
Clin. Sci. (Lond)
, vol.121
, pp. 191-203
-
-
Horio, Y.1
Hayashi, T.2
Kuno, A.3
Kunimoto, R.4
-
21
-
-
84863149111
-
Epigenetics and cardiovascular development
-
Chang C.P., Bruneau B.G. Epigenetics and cardiovascular development. Annu. Rev. Physiol. 2012, 74:41-68.
-
(2012)
Annu. Rev. Physiol.
, vol.74
, pp. 41-68
-
-
Chang, C.P.1
Bruneau, B.G.2
-
22
-
-
0141814680
-
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
-
Cheng H.L., Mostoslavsky R., Saito S., et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 2003, 100:10794-10799.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 10794-10799
-
-
Cheng, H.L.1
Mostoslavsky, R.2
Saito, S.3
-
23
-
-
0037207475
-
The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
-
McBurney M.W., Yang X., Jardine K., et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 2003, 23:38-54.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
Yang, X.2
Jardine, K.3
-
24
-
-
0346094379
-
Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain
-
Sakamoto J., Miura T., Shimamoto K., Horio Y. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett. 2004, 556:281-286.
-
(2004)
FEBS Lett.
, vol.556
, pp. 281-286
-
-
Sakamoto, J.1
Miura, T.2
Shimamoto, K.3
Horio, Y.4
-
25
-
-
0032977614
-
Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2
-
Afshar G., Murnane J.P. Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2. Gene 1999, 234:161-168.
-
(1999)
Gene
, vol.234
, pp. 161-168
-
-
Afshar, G.1
Murnane, J.P.2
-
26
-
-
84862300236
-
Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease
-
Zhang A., Wang H., Qin X., Pang S., Yan B. Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease. Biochem. Biophys. Res. Commun. 2012, 422:693-696.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.422
, pp. 693-696
-
-
Zhang, A.1
Wang, H.2
Qin, X.3
Pang, S.4
Yan, B.5
-
27
-
-
84655167647
-
Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity
-
Clark S.J., Falchi M., Olsson B., et al. Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity (Silver Spring) 2012, 20:178-185.
-
(2012)
Obesity (Silver Spring)
, vol.20
, pp. 178-185
-
-
Clark, S.J.1
Falchi, M.2
Olsson, B.3
-
28
-
-
82255191744
-
SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians
-
Dong Y., Guo T., Traurig M., et al. SIRT1 is associated with a decrease in acute insulin secretion and a sex specific increase in risk for type 2 diabetes in Pima Indians. Mol. Genet. Metab. 2011, 104:661-665.
-
(2011)
Mol. Genet. Metab.
, vol.104
, pp. 661-665
-
-
Dong, Y.1
Guo, T.2
Traurig, M.3
-
29
-
-
73249152036
-
SIRT1 genetic variation is related to BMI and risk of obesity
-
Zillikens M.C., van Meurs J.B., Rivadeneira F., et al. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes 2009, 58:2828-2834.
-
(2009)
Diabetes
, vol.58
, pp. 2828-2834
-
-
Zillikens, M.C.1
van Meurs, J.B.2
Rivadeneira, F.3
-
30
-
-
79956076564
-
Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese
-
Shimoyama Y., Suzuki K., Hamajima N., Niwa T. Sirtuin 1 gene polymorphisms are associated with body fat and blood pressure in Japanese. Transl. Res. 2011, 157:339-347.
-
(2011)
Transl. Res.
, vol.157
, pp. 339-347
-
-
Shimoyama, Y.1
Suzuki, K.2
Hamajima, N.3
Niwa, T.4
-
31
-
-
84855172461
-
SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis patients
-
Shimoyama Y., Mitsuda Y., Tsuruta Y., Suzuki K., Hamajima N., Niwa T. SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis patients. J. Ren. Nutr. 2012, 22:114-119.
-
(2012)
J. Ren. Nutr.
, vol.22
, pp. 114-119
-
-
Shimoyama, Y.1
Mitsuda, Y.2
Tsuruta, Y.3
Suzuki, K.4
Hamajima, N.5
Niwa, T.6
-
32
-
-
0033600176
-
Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
-
Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260:273-279.
-
(1999)
Biochem. Biophys. Res. Commun.
, vol.260
, pp. 273-279
-
-
Frye, R.A.1
-
33
-
-
33644875936
-
Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1
-
Voelter-Mahlknecht S., Mahlknecht U. Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int. J. Mol. Med. 2006, 17:59-67.
-
(2006)
Int. J. Mol. Med.
, vol.17
, pp. 59-67
-
-
Voelter-Mahlknecht, S.1
Mahlknecht, U.2
-
34
-
-
79953761260
-
PARP-2 regulates SIRT1 expression and whole-body energy expenditure
-
Bai P., Canto C., Brunyánszki A., et al. PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab. 2011, 13:450-460.
-
(2011)
Cell Metab.
, vol.13
, pp. 450-460
-
-
Bai, P.1
Canto, C.2
Brunyánszki, A.3
-
35
-
-
27544434763
-
Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
-
Chen W.Y., Wang D.H., Yen R.C., Luo J., Gu W., Baylin S.B. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005, 123:437-448.
-
(2005)
Cell
, vol.123
, pp. 437-448
-
-
Chen, W.Y.1
Wang, D.H.2
Yen, R.C.3
Luo, J.4
Gu, W.5
Baylin, S.B.6
-
36
-
-
78649852533
-
SIRT1 is regulated by a PPAR{γ}-SIRT1 negative feedback loop associated with senescence
-
Han L., Zhou R., Niu J., McNutt M.A., Wang P., Tong T. SIRT1 is regulated by a PPAR{γ}-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res. 2010, 38:7458-7471.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 7458-7471
-
-
Han, L.1
Zhou, R.2
Niu, J.3
McNutt, M.A.4
Wang, P.5
Tong, T.6
-
37
-
-
10844236451
-
Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
-
Nemoto S., Fergusson M.M., Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004, 306:2105-2108.
-
(2004)
Science
, vol.306
, pp. 2105-2108
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
38
-
-
80053564714
-
CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability
-
Noriega L.G., Feige J.N., Canto C., et al. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011, 12:1069-1076.
-
(2011)
EMBO Rep.
, vol.12
, pp. 1069-1076
-
-
Noriega, L.G.1
Feige, J.N.2
Canto, C.3
-
39
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A., Sweeney L.B., Sturgill J.F., et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303:2011-2015.
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
-
40
-
-
0035913911
-
Negative control of p53 by Sir2alpha promotes cell survival under stress
-
Luo J., Nikolaev A.Y., Imai S., et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001, 107:137-148.
-
(2001)
Cell
, vol.107
, pp. 137-148
-
-
Luo, J.1
Nikolaev, A.Y.2
Imai, S.3
-
41
-
-
1342264308
-
Mammalian SIRT1 represses forkhead transcription factors
-
Motta M.C., Divecha N., Lemieux M., et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004, 116:551-563.
-
(2004)
Cell
, vol.116
, pp. 551-563
-
-
Motta, M.C.1
Divecha, N.2
Lemieux, M.3
-
42
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005, 434:113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
43
-
-
0035913903
-
HSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
-
Vaziri H., Dessain S.K., Ng Eaton E., et al. HSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001, 107:149-159.
-
(2001)
Cell
, vol.107
, pp. 149-159
-
-
Vaziri, H.1
Dessain, S.K.2
Ng Eaton, E.3
-
44
-
-
25444462980
-
Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications
-
Zhao X., Sternsdorf T., Bolger T.A., Evans R.M., Yao T.P. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol. Cell. Biol. 2005, 25:8456-8464.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 8456-8464
-
-
Zhao, X.1
Sternsdorf, T.2
Bolger, T.A.3
Evans, R.M.4
Yao, T.P.5
-
45
-
-
4544227785
-
Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice
-
Furuyama T., Kitayama K., Shimoda Y., et al. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J. Biol. Chem. 2004, 279:34741-34749.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 34741-34749
-
-
Furuyama, T.1
Kitayama, K.2
Shimoda, Y.3
-
46
-
-
1542267804
-
Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification
-
Hosaka T., Biggs W.H., Tieu D., et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl. Acad. Sci. USA 2004, 101:2975-2980.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 2975-2980
-
-
Hosaka, T.1
Biggs, W.H.2
Tieu, D.3
-
47
-
-
80051970950
-
FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model
-
Schips T.G., Wietelmann A., Höhn K., et al. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc. Res. 2011, 91:587-597.
-
(2011)
Cardiovasc. Res.
, vol.91
, pp. 587-597
-
-
Schips, T.G.1
Wietelmann, A.2
Höhn, K.3
-
48
-
-
0032617919
-
Expression of MEF2 genes during human cardiac development
-
Iida K., Hidaka K., Takeuchi M., et al. Expression of MEF2 genes during human cardiac development. Tohoku J. Exp. Med. 1999, 187:15-23.
-
(1999)
Tohoku J. Exp. Med.
, vol.187
, pp. 15-23
-
-
Iida, K.1
Hidaka, K.2
Takeuchi, M.3
-
49
-
-
33751174699
-
Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis
-
Karamboulas C., Dakubo G.D., Liu J., et al. Disruption of MEF2 activity in cardiomyoblasts inhibits cardiomyogenesis. J. Cell Sci. 2006, 119:4315-4321.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 4315-4321
-
-
Karamboulas, C.1
Dakubo, G.D.2
Liu, J.3
-
50
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
Sundaresan N.R., Gupta M., Kim G., Rajamohan S.B., Isbatan A., Gupta M.P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 2009, 119:2758-2771.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
51
-
-
55749090506
-
Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression
-
Miller S.A., Huang A.C., Miazgowicz M.M., Brassil M.M., Weinmann A.S. Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. Genes Dev. 2008, 22:2980-2993.
-
(2008)
Genes Dev.
, vol.22
, pp. 2980-2993
-
-
Miller, S.A.1
Huang, A.C.2
Miazgowicz, M.M.3
Brassil, M.M.4
Weinmann, A.S.5
-
52
-
-
84855323192
-
PRC2 directly methylates GATA4 and represses its transcriptional activity
-
He A., Shen X., Ma Q., et al. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 2012, 26:37-42.
-
(2012)
Genes Dev.
, vol.26
, pp. 37-42
-
-
He, A.1
Shen, X.2
Ma, Q.3
-
53
-
-
53249121556
-
Sirtuins-novel therapeutic targets to treat age-associated diseases
-
Lavu S., Boss O., Elliott P.J., Lambert P.D. Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug Discovery 2008, 7:841-853.
-
(2008)
Nat. Rev. Drug Discovery
, vol.7
, pp. 841-853
-
-
Lavu, S.1
Boss, O.2
Elliott, P.J.3
Lambert, P.D.4
|