-
1
-
-
84982770928
-
Generating models by the expansion method: applications to geographic research
-
Casetti E. Generating models by the expansion method: applications to geographic research. Geographical Analysis 1972, 4:81-91.
-
(1972)
Geographical Analysis
, vol.4
, pp. 81-91
-
-
Casetti, E.1
-
2
-
-
0030432956
-
Geographically weighted regression: a method for exploring spatial nonstationarity
-
Brunsdon C., Fotheringham A.S., Charlton M. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis 1996, 28:281-298.
-
(1996)
Geographical Analysis
, vol.28
, pp. 281-298
-
-
Brunsdon, C.1
Fotheringham, A.S.2
Charlton, M.3
-
3
-
-
0001182913
-
Geographically weighted regression: modelling spatial nonstationarity
-
Brunsdon C., Fotheringham A.S., Charlton M. Geographically weighted regression: modelling spatial nonstationarity. The Statistician 1998, 47:431-443.
-
(1998)
The Statistician
, vol.47
, pp. 431-443
-
-
Brunsdon, C.1
Fotheringham, A.S.2
Charlton, M.3
-
4
-
-
0000722130
-
Some notes on parametric significance tests for geographically weighted regression
-
Brunsdon C., Fotheringham A.S., Charlton M. Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science 1999, 39:497-524.
-
(1999)
Journal of Regional Science
, vol.39
, pp. 497-524
-
-
Brunsdon, C.1
Fotheringham, A.S.2
Charlton, M.3
-
5
-
-
0000864858
-
An adaptive filter for estimating spatially varying parameters: application to modeling police hours spent in response to calls for service
-
Foster S.A., Gorr W.L. An adaptive filter for estimating spatially varying parameters: application to modeling police hours spent in response to calls for service. Management Science 1986, 32:878-889.
-
(1986)
Management Science
, vol.32
, pp. 878-889
-
-
Foster, S.A.1
Gorr, W.L.2
-
7
-
-
31044432144
-
Profile likelihood inferences on semiparametric varying-coefficient partially linear models
-
Fan J.Q., Huang T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 2005, 11:1031-1057.
-
(2005)
Bernoulli
, vol.11
, pp. 1031-1057
-
-
Fan, J.Q.1
Huang, T.2
-
9
-
-
0032434789
-
Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis
-
Fotheringham A.S., Charlton M., Brunsdon C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A 1998, 30:1905-1927.
-
(1998)
Environment and Planning A
, vol.30
, pp. 1905-1927
-
-
Fotheringham, A.S.1
Charlton, M.2
Brunsdon, C.3
-
13
-
-
0003074252
-
Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling
-
Gorr W.L., Olligschlaeger A.M. Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling. Geographical Analysis 1994, 26:67-87.
-
(1994)
Geographical Analysis
, vol.26
, pp. 67-87
-
-
Gorr, W.L.1
Olligschlaeger, A.M.2
-
16
-
-
0034094265
-
Statistical tests for spatial nonstationarity based on the geographically weighted regression model
-
Leung Y., Mei C.L., Zhang W.X. Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environment and Planning A 2000, 32:9-32.
-
(2000)
Environment and Planning A
, vol.32
, pp. 9-32
-
-
Leung, Y.1
Mei, C.L.2
Zhang, W.X.3
-
17
-
-
0034034461
-
Testing for spatial autocorrelation among the residuals of the geographically weighted regression
-
Leung Y., Mei C.L., Zhang W.X. Testing for spatial autocorrelation among the residuals of the geographically weighted regression. Environment and Planning A 2000, 32:871-890.
-
(2000)
Environment and Planning A
, vol.32
, pp. 871-890
-
-
Leung, Y.1
Mei, C.L.2
Zhang, W.X.3
-
18
-
-
76349090581
-
Estimation and hypothesis testing for nonparametric hedonic house price functions
-
McMillen D.P., Redfearn C.L. Estimation and hypothesis testing for nonparametric hedonic house price functions. Journal of Regional Science 2010, 50(712):C733.
-
(2010)
Journal of Regional Science
, vol.50
, Issue.712
-
-
McMillen, D.P.1
Redfearn, C.L.2
-
19
-
-
1642264983
-
A note on the mixed geographically weighted regression model
-
Mei C.L., He S.Y., Fang K.T. A note on the mixed geographically weighted regression model. Journal of Regional Science 2004, 44:143-157.
-
(2004)
Journal of Regional Science
, vol.44
, pp. 143-157
-
-
Mei, C.L.1
He, S.Y.2
Fang, K.T.3
-
20
-
-
33645820840
-
Testing the importance of the explanatory variables in a mixed geographically weighted regression model
-
Mei C.L., Wang N., Zhang W.X. Testing the importance of the explanatory variables in a mixed geographically weighted regression model. Environment and Planning A 2006, 38:587-598.
-
(2006)
Environment and Planning A
, vol.38
, pp. 587-598
-
-
Mei, C.L.1
Wang, N.2
Zhang, W.X.3
-
21
-
-
0036257201
-
A general framework for estimation and inference of geographically weighted regression models: 1. location-specific kernel bandwidths and a test for locational heterogeneity
-
Páez A., Uchida T., Miyamoto K. A general framework for estimation and inference of geographically weighted regression models: 1. location-specific kernel bandwidths and a test for locational heterogeneity. Environment and Planning A 2002, 34:733-754.
-
(2002)
Environment and Planning A
, vol.34
, pp. 733-754
-
-
Páez, A.1
Uchida, T.2
Miyamoto, K.3
-
22
-
-
0036257023
-
A general framework for estimation and inference of geographically weighted regression models: 2. spatial association and model specification tests
-
Páez A., Uchida T., Miyamoto K. A general framework for estimation and inference of geographically weighted regression models: 2. spatial association and model specification tests. Environment and Planning A 2002, 34:883-904.
-
(2002)
Environment and Planning A
, vol.34
, pp. 883-904
-
-
Páez, A.1
Uchida, T.2
Miyamoto, K.3
-
24
-
-
66249126303
-
Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso
-
Wheeler D.C. Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environment and Planning A 2009, 41:722-742.
-
(2009)
Environment and Planning A
, vol.41
, pp. 722-742
-
-
Wheeler, D.C.1
|