메뉴 건너뛰기




Volumn 29, Issue 6, 2012, Pages 2615-2620

On the estimation and testing of mixed geographically weighted regression models

Author keywords

Constrained estimators; Generalized F test; Linear constraints; Mixed geographically weighted regression; Two step estimation

Indexed keywords


EID: 84865995784     PISSN: 02649993     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.econmod.2012.08.015     Document Type: Article
Times cited : (37)

References (24)
  • 1
    • 84982770928 scopus 로고
    • Generating models by the expansion method: applications to geographic research
    • Casetti E. Generating models by the expansion method: applications to geographic research. Geographical Analysis 1972, 4:81-91.
    • (1972) Geographical Analysis , vol.4 , pp. 81-91
    • Casetti, E.1
  • 2
    • 0030432956 scopus 로고    scopus 로고
    • Geographically weighted regression: a method for exploring spatial nonstationarity
    • Brunsdon C., Fotheringham A.S., Charlton M. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis 1996, 28:281-298.
    • (1996) Geographical Analysis , vol.28 , pp. 281-298
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.3
  • 3
    • 0001182913 scopus 로고    scopus 로고
    • Geographically weighted regression: modelling spatial nonstationarity
    • Brunsdon C., Fotheringham A.S., Charlton M. Geographically weighted regression: modelling spatial nonstationarity. The Statistician 1998, 47:431-443.
    • (1998) The Statistician , vol.47 , pp. 431-443
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.3
  • 4
    • 0000722130 scopus 로고    scopus 로고
    • Some notes on parametric significance tests for geographically weighted regression
    • Brunsdon C., Fotheringham A.S., Charlton M. Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science 1999, 39:497-524.
    • (1999) Journal of Regional Science , vol.39 , pp. 497-524
    • Brunsdon, C.1    Fotheringham, A.S.2    Charlton, M.3
  • 5
    • 0000864858 scopus 로고
    • An adaptive filter for estimating spatially varying parameters: application to modeling police hours spent in response to calls for service
    • Foster S.A., Gorr W.L. An adaptive filter for estimating spatially varying parameters: application to modeling police hours spent in response to calls for service. Management Science 1986, 32:878-889.
    • (1986) Management Science , vol.32 , pp. 878-889
    • Foster, S.A.1    Gorr, W.L.2
  • 7
    • 31044432144 scopus 로고    scopus 로고
    • Profile likelihood inferences on semiparametric varying-coefficient partially linear models
    • Fan J.Q., Huang T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 2005, 11:1031-1057.
    • (2005) Bernoulli , vol.11 , pp. 1031-1057
    • Fan, J.Q.1    Huang, T.2
  • 8
    • 0001952078 scopus 로고    scopus 로고
    • Two techniques for exploring non-stationarity in geographical data
    • Fotheringham A.S., Charlton M., Brunsdon C. Two techniques for exploring non-stationarity in geographical data. Geographical System 1997, 4:59-82.
    • (1997) Geographical System , vol.4 , pp. 59-82
    • Fotheringham, A.S.1    Charlton, M.2    Brunsdon, C.3
  • 9
    • 0032434789 scopus 로고    scopus 로고
    • Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis
    • Fotheringham A.S., Charlton M., Brunsdon C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A 1998, 30:1905-1927.
    • (1998) Environment and Planning A , vol.30 , pp. 1905-1927
    • Fotheringham, A.S.1    Charlton, M.2    Brunsdon, C.3
  • 13
    • 0003074252 scopus 로고
    • Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling
    • Gorr W.L., Olligschlaeger A.M. Weighted spatial adaptive filtering: Monte Carlo studies and application to illicit drug market modeling. Geographical Analysis 1994, 26:67-87.
    • (1994) Geographical Analysis , vol.26 , pp. 67-87
    • Gorr, W.L.1    Olligschlaeger, A.M.2
  • 16
    • 0034094265 scopus 로고    scopus 로고
    • Statistical tests for spatial nonstationarity based on the geographically weighted regression model
    • Leung Y., Mei C.L., Zhang W.X. Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environment and Planning A 2000, 32:9-32.
    • (2000) Environment and Planning A , vol.32 , pp. 9-32
    • Leung, Y.1    Mei, C.L.2    Zhang, W.X.3
  • 17
    • 0034034461 scopus 로고    scopus 로고
    • Testing for spatial autocorrelation among the residuals of the geographically weighted regression
    • Leung Y., Mei C.L., Zhang W.X. Testing for spatial autocorrelation among the residuals of the geographically weighted regression. Environment and Planning A 2000, 32:871-890.
    • (2000) Environment and Planning A , vol.32 , pp. 871-890
    • Leung, Y.1    Mei, C.L.2    Zhang, W.X.3
  • 18
    • 76349090581 scopus 로고    scopus 로고
    • Estimation and hypothesis testing for nonparametric hedonic house price functions
    • McMillen D.P., Redfearn C.L. Estimation and hypothesis testing for nonparametric hedonic house price functions. Journal of Regional Science 2010, 50(712):C733.
    • (2010) Journal of Regional Science , vol.50 , Issue.712
    • McMillen, D.P.1    Redfearn, C.L.2
  • 19
    • 1642264983 scopus 로고    scopus 로고
    • A note on the mixed geographically weighted regression model
    • Mei C.L., He S.Y., Fang K.T. A note on the mixed geographically weighted regression model. Journal of Regional Science 2004, 44:143-157.
    • (2004) Journal of Regional Science , vol.44 , pp. 143-157
    • Mei, C.L.1    He, S.Y.2    Fang, K.T.3
  • 20
    • 33645820840 scopus 로고    scopus 로고
    • Testing the importance of the explanatory variables in a mixed geographically weighted regression model
    • Mei C.L., Wang N., Zhang W.X. Testing the importance of the explanatory variables in a mixed geographically weighted regression model. Environment and Planning A 2006, 38:587-598.
    • (2006) Environment and Planning A , vol.38 , pp. 587-598
    • Mei, C.L.1    Wang, N.2    Zhang, W.X.3
  • 21
    • 0036257201 scopus 로고    scopus 로고
    • A general framework for estimation and inference of geographically weighted regression models: 1. location-specific kernel bandwidths and a test for locational heterogeneity
    • Páez A., Uchida T., Miyamoto K. A general framework for estimation and inference of geographically weighted regression models: 1. location-specific kernel bandwidths and a test for locational heterogeneity. Environment and Planning A 2002, 34:733-754.
    • (2002) Environment and Planning A , vol.34 , pp. 733-754
    • Páez, A.1    Uchida, T.2    Miyamoto, K.3
  • 22
    • 0036257023 scopus 로고    scopus 로고
    • A general framework for estimation and inference of geographically weighted regression models: 2. spatial association and model specification tests
    • Páez A., Uchida T., Miyamoto K. A general framework for estimation and inference of geographically weighted regression models: 2. spatial association and model specification tests. Environment and Planning A 2002, 34:883-904.
    • (2002) Environment and Planning A , vol.34 , pp. 883-904
    • Páez, A.1    Uchida, T.2    Miyamoto, K.3
  • 24
    • 66249126303 scopus 로고    scopus 로고
    • Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso
    • Wheeler D.C. Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environment and Planning A 2009, 41:722-742.
    • (2009) Environment and Planning A , vol.41 , pp. 722-742
    • Wheeler, D.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.