메뉴 건너뛰기




Volumn 9, Issue 9, 2012, Pages 2441-2450

Fuzzy c-means clustering and opposition-based reinforcement learning for traffic congestion identification

Author keywords

Fuzzy partition; Opposite action; Reinforcement learning; Traffic congestion

Indexed keywords

ACTION SELECTION; BIAS LEARNING; CLUSTER CENTERS; CONGESTION DETECTION; CONVERGENCE SPEED; FUZZY C MEANS CLUSTERING; FUZZY C-MEANS ALGORITHMS; FUZZY C-MEANS CLUSTERING ALGORITHMS; FUZZY PARTITION; HARD C-MEANS CLUSTERING; INITIAL VALUES; LEARNING PROCESS; NUMERICAL EXPERIMENTS; OPPOSITE ACTION; Q-VALUES; TRAFFIC SURVEILLANCE;

EID: 84865972204     PISSN: 15487741     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (21)

References (17)
  • 1
    • 0004096558 scopus 로고
    • Development and testing of incident detection algorithms
    • Report No. FHWA-RD-76-20, Washington, D. C., Federal Highway Administration
    • H. J. Payne, E. D. Helfenbein, H. C. Knobel. Development and testing of incident detection algorithms, Vol. 2, Research Methodology and Detailed Results, Report No. FHWA-RD-76-20, Washington, D. C., Federal Highway Administration, 1976
    • (1976) Research Methodology and Detailed Results
    • Payne, H.J.1    Helfenbein, E.D.2    Knobel, H.C.3
  • 2
    • 0000769128 scopus 로고
    • Congestion identification aspects of the McMaster incident detection algorithm
    • B. N. Persaud, F. L. Hall, L. M. Hall. Congestion identification aspects of the McMaster incident detection algorithm. Transportation Research Record, 1990, 167-175
    • (1990) Transportation Research Record , pp. 167-175
    • Persaud, B.N.1    Hall, F.L.2    Hall, L.M.3
  • 4
    • 0019031682 scopus 로고
    • Dynamic model-based techniques for the detection of incident on freeways
    • A. Willsky et al. Dynamic model-based techniques for the detection of incident on freeways. IEEE Transactions on Automatic Control, Vol. AC-25, No.3, June 1980, 347-360
    • (1980) IEEE Transactions on Automatic Control , vol.AC-25 , Issue.3 , pp. 347-360
    • Willsky, A.1
  • 5
    • 0031284301 scopus 로고    scopus 로고
    • Development and evaluation of neural network freeway incident detection models using field data
    • H. Dia, G. Rose. Development and evaluation of neural network freeway incident detection models using field data. Transportation Research Part C-emerging Technologies, Vol.5, No.5, Oct. 1997, 313-331
    • (1997) Transportation Research Part C-emerging Technologies , vol.5 , Issue.5 , pp. 313-331
    • Dia, H.1    Rose, G.2
  • 7
    • 0032843554 scopus 로고    scopus 로고
    • An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities
    • D. Pham. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit Letters, Vol. 20, 1999, 57-68
    • (1999) Pattern Recognit Letters , vol.20 , pp. 57-68
    • Pham, D.1
  • 9
    • 33947430572 scopus 로고    scopus 로고
    • Uncertain fuzzy clustering: Interval type-2 fuzzy approach to c-means
    • C. Hwang, F. Rhee. Uncertain fuzzy clustering: Interval type-2 fuzzy approach to c-means. IEEE Transactions on Fuzzy Systems, Vol.15, No.1, Feb. 2007, 107-120
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.1 , pp. 107-120
    • Hwang, C.1    Rhee, F.2
  • 14
    • 67349251526 scopus 로고    scopus 로고
    • Traffic congestion identification by combining PCA with higher-order Boltzmann machine
    • Z. Sun, Y. Wang. Traffic congestion identification by combining PCA with higher-order Boltzmann machine. Neural Comput. & Applications, Vol.18, 2009, 417-422
    • (2009) Neural Comput. & Applications , vol.18 , pp. 417-422
    • Sun, Z.1    Wang, Y.2
  • 16
    • 0029360028 scopus 로고    scopus 로고
    • On cluster validity for the fuzzy c-means model
    • N. R. Pal, J. C. Bezdek. On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems, Vol.3, No.3, Aug. 2007, 370-379
    • (2007) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 17
    • 37749053461 scopus 로고    scopus 로고
    • An optimal choice method of parameter m in FCM clustering algorithm
    • G. Gong, X. Gao, Z. Wu. An optimal choice method of parameter m in FCM clustering algorithm. Fuzzy Systems and Mathematics, Vol.19, No.1, Mar. 2005, 143-148
    • (2005) Fuzzy Systems and Mathematics , vol.19 , Issue.1 , pp. 143-148
    • Gong, G.1    Gao, X.2    Wu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.