메뉴 건너뛰기




Volumn 7476 LNCS, Issue , 2012, Pages 62-72

How well do filter-based MRFs model natural images?

Author keywords

[No Author keywords available]

Indexed keywords

DE-NOISING; DIRAC-DELTA; FILTER-BASED; HIGH-ORDER; IMAGE MODELS; IMAGE PROPERTIES; LEARNING SCHEMES; MARKOV RANDOM FIELD; MAXIMUM ENTROPY; NATURAL IMAGE STATISTICS; NATURAL IMAGES; POTENTIAL FUNCTION; SCENE STATISTICS; STATISTICAL PROPERTIES;

EID: 84865810646     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-32717-9_7     Document Type: Conference Paper
Times cited : (21)

References (21)
  • 1
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-D transform-domain collaborative filtering
    • Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE T. Image Process. 16(8), 2080-2095 (2007)
    • (2007) IEEE T. Image Process. , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 2
    • 0026835074 scopus 로고
    • Constrained restoration and the recovery of discontinuities
    • Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE T. Pattern Anal. Mach. Intell. 14(3), 367-383 (1992)
    • (1992) IEEE T. Pattern Anal. Mach. Intell. , vol.14 , Issue.3 , pp. 367-383
    • Geman, D.1    Reynolds, G.2
  • 3
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771-1800 (2002)
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 5
    • 67149120544 scopus 로고    scopus 로고
    • Estimating Markov Random Field Potentials for Natural Images
    • Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. Springer, Heidelberg
    • Köster, U., Lindgren, J.T., Hyvä, A.: Estimating Markov Random Field Potentials for Natural Images. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 515-522. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5441 , pp. 515-522
    • Köster, U.1    Lindgren, J.T.2    Hyvä, A.3
  • 6
    • 80052911857 scopus 로고    scopus 로고
    • Natural image denoising: Optimality and inherent bounds
    • Levin, A., Nadler, B.: Natural image denoising: Optimality and inherent bounds. In: CVPR 2011 (2011)
    • (2011) CVPR 2011
    • Levin, A.1    Nadler, B.2
  • 7
    • 62249200514 scopus 로고    scopus 로고
    • Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures
    • Lyu, S., Simoncelli, E.P.: Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures. IEEE T. Pattern Anal. Mach. Intell. 31(4), 693-706 (2009)
    • (2009) IEEE T. Pattern Anal. Mach. Intell. , vol.31 , Issue.4 , pp. 693-706
    • Lyu, S.1    Simoncelli, E.P.2
  • 10
    • 70450159350 scopus 로고    scopus 로고
    • Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning
    • Norouzi, M., Ranjbar, M., Mori, G.: Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning. In: CVPR 2009 (2009)
    • (2009) CVPR 2009
    • Norouzi, M.1    Ranjbar, M.2    Mori, G.3
  • 11
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using scale mixtures of Gaussians in the wavelet domain
    • Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE T. Image Process. 12(11), 1338-1351 (2003)
    • (2003) IEEE T. Image Process. , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.J.3    Simoncelli, E.P.4
  • 12
    • 85162052854 scopus 로고    scopus 로고
    • Generating more realistic images using gated MRF's
    • Ranzato, M., Mnih, V., Hinton, G.E.: Generating more realistic images using gated MRF's. In: NIPS 2010 (2010)
    • (2010) NIPS 2010
    • Ranzato, M.1    Mnih, V.2    Hinton, G.E.3
  • 13
    • 34247572097 scopus 로고    scopus 로고
    • On the spatial statistics of optical flow
    • Roth, S., Black, M.J.: On the spatial statistics of optical flow. Int. J. Comput. Vision 74(1), 33-50 (2007)
    • (2007) Int. J. Comput. Vision , vol.74 , Issue.1 , pp. 33-50
    • Roth, S.1    Black, M.J.2
  • 15
    • 3042609133 scopus 로고
    • The statistics of natural images
    • Ruderman, D.L.: The statistics of natural images. Network: Comp. Neural 5(4), 517-548 (1994)
    • (1994) Network: Comp. Neural , vol.5 , Issue.4 , pp. 517-548
    • Ruderman, D.L.1
  • 16
    • 77955989583 scopus 로고    scopus 로고
    • A generative perspective on MRFs in low-level vision
    • Schmidt, U., Gao, Q., Roth, S.: A generative perspective on MRFs in low-level vision. In: CVPR 2010 (2010)
    • (2010) CVPR 2010
    • Schmidt, U.1    Gao, Q.2    Roth, S.3
  • 17
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • Tieleman, T.: Training restricted boltzmann machines using approximations to the likelihood gradient. In: ICML 2008 (2008)
    • (2008) ICML 2008
    • Tieleman, T.1
  • 18
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE T. Image Process. 13(4), 600-612 (2004)
    • (2004) IEEE T. Image Process. , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4
  • 19
    • 35148861156 scopus 로고    scopus 로고
    • What makes a good model of natural images?
    • Weiss, Y., Freeman, W.T.: What makes a good model of natural images? In: CVPR 2007 (2007)
    • (2007) CVPR 2007
    • Weiss, Y.1    Freeman, W.T.2
  • 20
    • 79953038910 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of Student-t distributions
    • Welling, M., Hinton, G.E., Osindero, S.: Learning sparse topographic representations with products of Student-t distributions. In: NIPS 2002, pp. 1359-1366 (2002)
    • (2002) NIPS 2002 , pp. 1359-1366
    • Welling, M.1    Hinton, G.E.2    Osindero, S.3
  • 21
    • 0031270256 scopus 로고    scopus 로고
    • Prior learning and Gibbs reaction-diffusion
    • Zhu, S.C., Mumford, D.: Prior learning and Gibbs reaction-diffusion. IEEE T. Pattern Anal. Mach. Intell. 19(11), 1236-1250 (1997)
    • (1997) IEEE T. Pattern Anal. Mach. Intell. , vol.19 , Issue.11 , pp. 1236-1250
    • Zhu, S.C.1    Mumford, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.