메뉴 건너뛰기




Volumn 123, Issue 20, 2012, Pages 1891-1894

An adaptive mean shift clustering algorithm based on locality-sensitive hashing

Author keywords

Adaptive bandwidth; Adaptive mean shift; Data clustering; Locality sensitive hashing

Indexed keywords

ADAPTIVE BANDWIDTH; ADAPTIVE MEAN SHIFTS; BANDWIDTH ESTIMATION; BANDWIDTH SELECTIONS; DATA CLUSTERING; DATA DIMENSIONS; HIGH DIMENSIONAL DATA; LOCALITY SENSITIVE HASHING; MEAN SHIFT; MEAN SHIFT ALGORITHM; MULTIVARIATE DATA; NEIGHBORHOOD QUERIES; NUMBER OF ITERATIONS; TIME COMPLEXITY;

EID: 84865794414     PISSN: 00304026     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijleo.2012.03.075     Document Type: Article
Times cited : (11)

References (8)
  • 1
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • Y. Cheng Mean shift, mode seeking, and clustering IEEE Trans. Image Process. 17 8 1995 790 799
    • (1995) IEEE Trans. Image Process. , vol.17 , Issue.8 , pp. 790-799
    • Cheng, Y.1
  • 2
    • 0034857778 scopus 로고    scopus 로고
    • The variable bandwidths mean shift and data-driven scale selection
    • D. Comaniciu, and V.M.P. Ramesh The variable bandwidths mean shift and data-driven scale selection IEEE Int. Conf. Comput. Vis. 2001 438 445
    • (2001) IEEE Int. Conf. Comput. Vis. , pp. 438-445
    • Comaniciu, D.1    Ramesh, V.M.P.2
  • 3
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density functions with applications in pattern recognition
    • K. Fukunaga, and L. Hostetler The estimation of the gradient of a density functions with applications in pattern recognition. IEEE Trans. Inf. Theory 1 1975 32 40
    • (1975) IEEE Trans. Inf. Theory , vol.1 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.2
  • 4
    • 0345414073 scopus 로고    scopus 로고
    • Mean shift based clustering in high dimensions: A texture classification example
    • B. Georgescu, and I.M.P. Shimshoni Mean shift based clustering in high dimensions: a texture classification example Comput. Vis. 2003 456 463
    • (2003) Comput. Vis. , pp. 456-463
    • Georgescu, B.1    Shimshoni, I.M.P.2
  • 5
    • 34249015072 scopus 로고    scopus 로고
    • Optimal integration of shape information from vision and touch
    • H.B. Helbig, and M.O. Ernst Optimal integration of shape information from vision and touch Exp. Brain Res. 179 June (4) 2007 595 606
    • (2007) Exp. Brain Res. , vol.179 , Issue.JUNE 4 , pp. 595-606
    • Helbig, H.B.1    Ernst, M.O.2
  • 6
    • 0031644241 scopus 로고    scopus 로고
    • Approximate nearest neighbors: Towards removing the curse of dimensionality
    • P. Indyk, and R. Motwani Approximate nearest neighbors: towards removing the curse of dimensionality 30th Annual ACM Symposium Theory of Computing 1998 604 613
    • (1998) 30th Annual ACM Symposium Theory of Computing , pp. 604-613
    • Indyk, P.1    Motwani, R.2
  • 7
    • 70349085773 scopus 로고    scopus 로고
    • A variant of adaptive mean shift-based clustering
    • F. Li, and R. Klette A variant of adaptive mean shift-based clustering Lect. Notes Comput. Sci. 5506 2009 1002 1009
    • (2009) Lect. Notes Comput. Sci. , vol.5506 , pp. 1002-1009
    • Li, F.1    Klette, R.2
  • 8
    • 68249111619 scopus 로고    scopus 로고
    • An adaptive mean-shift framework for mri brain segmentation
    • A. Mayer, and H. Greenspan An adaptive mean-shift framework for mri brain segmentation IEEE Trans. Med. Imaging 28 8 2009 1238 1250
    • (2009) IEEE Trans. Med. Imaging , vol.28 , Issue.8 , pp. 1238-1250
    • Mayer, A.1    Greenspan, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.