메뉴 건너뛰기




Volumn 108, Issue 1, 2012, Pages 80-89

Efficient inhomogeneity compensation using fuzzy c-means clustering models

Author keywords

C Means clustering; Histogram; Image segmentation; Intensity inhomogeneity; Magnetic resonance imaging

Indexed keywords

C-MEANS CLUSTERING; COMPENSATION TECHNIQUES; COMPUTATIONAL LOADS; FUZZY C MEANS CLUSTERING; FUZZY C-MEANS ALGORITHMS; GRAY INTENSITY; HIGH AMPLITUDES; HISTOGRAM; INHOMOGENEITIES; INTENSITY INHOMOGENEITY; MR IMAGES; NONUNIFORMITY; REGISTRATION METHODS; SEGMENTATION ACCURACY;

EID: 84865730635     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2012.01.005     Document Type: Article
Times cited : (31)

References (27)
  • 4
    • 0027275316 scopus 로고
    • Review of MR image segmentation techniques using pattern recognition
    • Bezdek J.C., Hall L.O., Clarke L.P. Review of MR image segmentation techniques using pattern recognition. Medical Physics 1993, 20(4):1033-1048.
    • (1993) Medical Physics , vol.20 , Issue.4 , pp. 1033-1048
    • Bezdek, J.C.1    Hall, L.O.2    Clarke, L.P.3
  • 5
    • 0032034233 scopus 로고    scopus 로고
    • Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction
    • Brinkmann B.H., Manduca A., Robb R.A. Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction. IEEE Transactions on Medical Imaging 1998, 17(2):161-171.
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , Issue.2 , pp. 161-171
    • Brinkmann, B.H.1    Manduca, A.2    Robb, R.A.3
  • 6
    • 33750512945 scopus 로고    scopus 로고
    • Fast and robust fuzzy c-means algorithms incorporating local information for image segmentation
    • Cai W., Chen S., Zhang D.Q. Fast and robust fuzzy c-means algorithms incorporating local information for image segmentation. Pattern Recognition 2007, 40(3):825-838.
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 825-838
    • Cai, W.1    Chen, S.2    Zhang, D.Q.3
  • 7
    • 0036035478 scopus 로고    scopus 로고
    • Nonparametric segmentation of multispectral MR images incorporating spatial and intensity information
    • Derganc J., Likar B., Pernuš F. Nonparametric segmentation of multispectral MR images incorporating spatial and intensity information. Proceedings of SPIE Medical Imaging, vol. 4684 2002, 391-400.
    • (2002) Proceedings of SPIE Medical Imaging, vol. 4684 , pp. 391-400
    • Derganc, J.1    Likar, B.2    Pernuš, F.3
  • 8
    • 84872829763 scopus 로고    scopus 로고
    • Internet Brain Segmentation Repository. Available at: .
    • Internet Brain Segmentation Repository. Available at: http://www.cma.mgh.harvard.edu/ibsr.
  • 11
    • 0141857203 scopus 로고    scopus 로고
    • An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation
    • Liew A.W.C., Hong Y. An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation. IEEE Transactions on Medical Imaging 2003, 22(9):1063-1075.
    • (2003) IEEE Transactions on Medical Imaging , vol.22 , Issue.9 , pp. 1063-1075
    • Liew, A.W.C.1    Hong, Y.2
  • 13
    • 0033181293 scopus 로고    scopus 로고
    • Adaptive fuzzy segmentation of magnetic resonance images
    • Pham D.L., Prince J.L. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Transactions on Medical Imaging 1999, 18(9):737-752.
    • (1999) IEEE Transactions on Medical Imaging , vol.18 , Issue.9 , pp. 737-752
    • Pham, D.L.1    Prince, J.L.2
  • 14
    • 0032028195 scopus 로고    scopus 로고
    • Segmentation of MR images with intensity inhomogeneities
    • Rajapakse J.C., Kruggel J.C. Segmentation of MR images with intensity inhomogeneities. Image and Vision Computing 1998, 16(3):165-180.
    • (1998) Image and Vision Computing , vol.16 , Issue.3 , pp. 165-180
    • Rajapakse, J.C.1    Kruggel, J.C.2
  • 16
    • 24344477133 scopus 로고    scopus 로고
    • An intelligent modified fuzzy c-means based algorithm for bias field estimation and segmentation of brain MRI
    • Siyal M.Y., Yu L. An intelligent modified fuzzy c-means based algorithm for bias field estimation and segmentation of brain MRI. Pattern Recognition Letters 2005, 26(13):2052-2062.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.13 , pp. 2052-2062
    • Siyal, M.Y.1    Yu, L.2
  • 17
    • 0031987382 scopus 로고    scopus 로고
    • A nonparamtertic method for automatic correction of intensity nonuniformities
    • Sled J.G., Zijdenbos A.P., Evans A.C. A nonparamtertic method for automatic correction of intensity nonuniformities. IEEE Transactions on Medical Imaging 1998, 17(1):87-97.
    • (1998) IEEE Transactions on Medical Imaging , vol.17 , Issue.1 , pp. 87-97
    • Sled, J.G.1    Zijdenbos, A.P.2    Evans, A.C.3
  • 20
    • 51849157762 scopus 로고    scopus 로고
    • Multi-stage FCM-based intensity inhomogeneity correction for MR brain image segmentation
    • Szilágyi L., Szilágyi S.M., Benyó Z. Multi-stage FCM-based intensity inhomogeneity correction for MR brain image segmentation. Lecture Notes in Computer Science 2008, 5164:527-536.
    • (2008) Lecture Notes in Computer Science , vol.5164 , pp. 527-536
    • Szilágyi, L.1    Szilágyi, S.M.2    Benyó, Z.3
  • 21
    • 78651356509 scopus 로고    scopus 로고
    • Intensity inhomogeneity compensation and segmentation of MR brain images using hybrid c-means clustering models
    • Szilágyi L., Szilágyi S.M., Benyó B., Benyó Z. Intensity inhomogeneity compensation and segmentation of MR brain images using hybrid c-means clustering models. Biomedical Signal Processing and Control 2011, 6(1):3-12.
    • (2011) Biomedical Signal Processing and Control , vol.6 , Issue.1 , pp. 3-12
    • Szilágyi, L.1    Szilágyi, S.M.2    Benyó, B.3    Benyó, Z.4
  • 22
    • 79961157200 scopus 로고    scopus 로고
    • Fuzzy-possibilistic product partition: a novel robust approach to c-means clustering
    • Szilágyi L. Fuzzy-possibilistic product partition: a novel robust approach to c-means clustering. Lecture Notes in Computer Science 2011, 6820:150-161.
    • (2011) Lecture Notes in Computer Science , vol.6820 , pp. 150-161
    • Szilágyi, L.1
  • 23
    • 34047224433 scopus 로고    scopus 로고
    • Coil sensitivity estimation for optimal SNR reconstruction and intensity inhomogeneity correction in phased array MR imaging
    • Vemuri P., Kholmovski E.G., Parker D.L., Chapman B.E. Coil sensitivity estimation for optimal SNR reconstruction and intensity inhomogeneity correction in phased array MR imaging. Lecture Notes in Computer Science 2005, 3565:603-614.
    • (2005) Lecture Notes in Computer Science , vol.3565 , pp. 603-614
    • Vemuri, P.1    Kholmovski, E.G.2    Parker, D.L.3    Chapman, B.E.4
  • 24
    • 0034763204 scopus 로고    scopus 로고
    • Improved high resolution MR imaging for surface coils using automated intensity non-uniformity correction: feasibility study in the orbit
    • Vokurka E.A., Watson N.A., Watson Y., Thacker N.A., Jackson A. Improved high resolution MR imaging for surface coils using automated intensity non-uniformity correction: feasibility study in the orbit. Journal of Magnetic Resonance Imaging 2001, 14(5):540-546.
    • (2001) Journal of Magnetic Resonance Imaging , vol.14 , Issue.5 , pp. 540-546
    • Vokurka, E.A.1    Watson, N.A.2    Watson, Y.3    Thacker, N.A.4    Jackson, A.5
  • 25
    • 4544369064 scopus 로고    scopus 로고
    • MRI intensity inhomogeneity correction by combining intensity and spatial information
    • Vovk U., PernuŠ F., Likar B. MRI intensity inhomogeneity correction by combining intensity and spatial information. Physics in Medicine and Biology 2004, 49(17):4119-4133.
    • (2004) Physics in Medicine and Biology , vol.49 , Issue.17 , pp. 4119-4133
    • Vovk, U.1    Pernuš, F.2    Likar, B.3
  • 26
    • 33847774807 scopus 로고    scopus 로고
    • A review of methods for correction of intensity inhomogeneity in MRI
    • Vovk U., PernuŠ F., Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Transactions on Medical Imaging 2007, 26(3):405-421.
    • (2007) IEEE Transactions on Medical Imaging , vol.26 , Issue.3 , pp. 405-421
    • Vovk, U.1    Pernuš, F.2    Likar, B.3
  • 27
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang Y., Brady M., Smith S.S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 2001, 20(1):45-57.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.