메뉴 건너뛰기




Volumn 29, Issue 6, 2012, Pages 2583-2590

Empirical mode decomposition-based least squares support vector regression for foreign exchange rate forecasting

Author keywords

Empirical mode decomposition; Foreign exchange rate forecasting; Intrinsic mode function; Least squares support vector regression

Indexed keywords


EID: 84865657988     PISSN: 02649993     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.econmod.2012.07.018     Document Type: Article
Times cited : (132)

References (26)
  • 2
    • 84155186340 scopus 로고    scopus 로고
    • Forecasting tourism demand based on empirical mode decomposition and neural network
    • Chen C.F., Lai M.C., Yeh C.C. Forecasting tourism demand based on empirical mode decomposition and neural network. Knowledge-Based System 2012, 26:281-287.
    • (2012) Knowledge-Based System , vol.26 , pp. 281-287
    • Chen, C.F.1    Lai, M.C.2    Yeh, C.C.3
  • 3
    • 78649330188 scopus 로고    scopus 로고
    • Cross-correlation and the predictability of financial return series
    • Duan W.Q., Stanley H.E. Cross-correlation and the predictability of financial return series. Physica A 2011, 390(2):290-296.
    • (2011) Physica A , vol.390 , Issue.2 , pp. 290-296
    • Duan, W.Q.1    Stanley, H.E.2
  • 4
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo Z., Zhao W., Lu H., Wang J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012, 37(1):241-249.
    • (2012) Renewable Energy , vol.37 , Issue.1 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3    Wang, J.4
  • 5
    • 77956340248 scopus 로고    scopus 로고
    • Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting
    • Hadavandi E., Shavandi H., Ghanbari A. Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based System 2010, 23(8):800-808.
    • (2010) Knowledge-Based System , vol.23 , Issue.8 , pp. 800-808
    • Hadavandi, E.1    Shavandi, H.2    Ghanbari, A.3
  • 6
    • 78650261217 scopus 로고    scopus 로고
    • A hybrid slantlet denoising least squares support vector regression model for exchange rate prediction
    • He K., Lai K.K., Yen J. A hybrid slantlet denoising least squares support vector regression model for exchange rate prediction. Procedia Computer Science 2010, 1(1):2397-2405.
    • (2010) Procedia Computer Science , vol.1 , Issue.1 , pp. 2397-2405
    • He, K.1    Lai, K.K.2    Yen, J.3
  • 9
    • 77957853038 scopus 로고    scopus 로고
    • Chaos-based support vector regressions for exchange rate forecasting
    • Huang S.C., Chuang P.J., Wu C.F. Chaos-based support vector regressions for exchange rate forecasting. Expert Systems with Applications 2010, 37(12):8590-8598.
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 8590-8598
    • Huang, S.C.1    Chuang, P.J.2    Wu, C.F.3
  • 10
    • 33646145333 scopus 로고    scopus 로고
    • Dynamic reconstruction of chaotic systems from inter-spike intervals using least square support vector machine
    • Iplikci S. Dynamic reconstruction of chaotic systems from inter-spike intervals using least square support vector machine. Physica D 2006, 216:282-293.
    • (2006) Physica D , vol.216 , pp. 282-293
    • Iplikci, S.1
  • 11
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
    • Khashei M., Bijari M., Ali Raissi Ardali G. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 2009, 72(4-6):956-967.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Ali Raissi Ardali, G.3
  • 12
    • 54049100450 scopus 로고    scopus 로고
    • Regularized least squares fuzzy support vector regression for financial time series forecasting
    • Khemchandani R., Jayadeva, Chandra S. Regularized least squares fuzzy support vector regression for financial time series forecasting. Expert Systems with Applications 2009, 36(1):132-138.
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 132-138
    • Khemchandani, R.1    Jayadeva Chandra, S.2
  • 13
    • 84868502438 scopus 로고    scopus 로고
    • Revenue forecasting using a least-squares support vector regression model in a fuzzy environment
    • in press. doi:10.1016/j.ins.2011.09.003
    • Lin, K.P., Pai, P.F., Lu, Y.M., Chang, P.T., in press. Revenue forecasting using a least-squares support vector regression model in a fuzzy environment. Information Sciences. doi:10.1016/j.ins.2011.09.003.
    • Information Sciences.
    • Lin, K.P.1    Pai, P.F.2    Lu, Y.M.3    Chang, P.T.4
  • 14
    • 64949130686 scopus 로고    scopus 로고
    • Financial time series forecasting using independent component analysis and support vector machine
    • Lu C.J., Lee T.S., Chiu C.C. Financial time series forecasting using independent component analysis and support vector machine. Decision Support Systems 2009, 47(2):115-125.
    • (2009) Decision Support Systems , vol.47 , Issue.2 , pp. 115-125
    • Lu, C.J.1    Lee, T.S.2    Chiu, C.C.3
  • 15
    • 77958504152 scopus 로고    scopus 로고
    • Exchange rate prediction using hybrid neural networks and trading indications
    • Ni H., Yin H. Exchange rate prediction using hybrid neural networks and trading indications. Neurocomputing 2009, 72(13-15):2815-2823.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 2815-2823
    • Ni, H.1    Yin, H.2
  • 16
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifier
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifier. Neural Processing Letters 1999, 9(3):293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 17
    • 80052280842 scopus 로고    scopus 로고
    • Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation
    • Tang B., Dong S., Song T. Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation. Signal Processing 2012, 92(1):248-258.
    • (2012) Signal Processing , vol.92 , Issue.1 , pp. 248-258
    • Tang, B.1    Dong, S.2    Song, T.3
  • 18
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay F.E.H., Cao L. Application of support vector machines in financial time series forecasting. Omega 2001, 29(4):309-317.
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 22
    • 84867655489 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • 2000, Springer-Verlag, New York, M. Mozer, V. Vapnik (Eds.)
    • Vapnik V., Golowich S., Smola A. Support vector method for function approximation, regression estimation, and signal processing. The Nature of Statistical Learning Theory 1997, 2000, Springer-Verlag, New York. Second ed. M. Mozer, V. Vapnik (Eds.).
    • (1997) The Nature of Statistical Learning Theory
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 23
    • 80655146998 scopus 로고    scopus 로고
    • A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China
    • Wang S., Yu L., Tang L., Wang S. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. Energy 2011, 36(11):6542-6554.
    • (2011) Energy , vol.36 , Issue.11 , pp. 6542-6554
    • Wang, S.1    Yu, L.2    Tang, L.3    Wang, S.4
  • 24
    • 48049095703 scopus 로고    scopus 로고
    • Forecasting crude oil price with EMD-based neural network ensemble learning paradigm
    • Yu L., Wang S.Y., Lai K.K. Forecasting crude oil price with EMD-based neural network ensemble learning paradigm. Energy Economics 2008, 30(5):2623-2635.
    • (2008) Energy Economics , vol.30 , Issue.5 , pp. 2623-2635
    • Yu, L.1    Wang, S.Y.2    Lai, K.K.3
  • 25
    • 0035480297 scopus 로고    scopus 로고
    • An investigation of neural networks for linear time series forecasting
    • Zhang G.P. An investigation of neural networks for linear time series forecasting. Computers and Operations Research 2001, 28(12):1183-1202.
    • (2001) Computers and Operations Research , vol.28 , Issue.12 , pp. 1183-1202
    • Zhang, G.P.1
  • 26
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting 1998, 14(1):35-62.
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.