-
1
-
-
80052379563
-
Short-time prediction of wind power using EMD and chaotic theory
-
An X., Jiang D., Zhao M., Liu C. Short-time prediction of wind power using EMD and chaotic theory. Communications in Nonlinear Science and Numerical Simulation 2012, 17(2):1036-1042.
-
(2012)
Communications in Nonlinear Science and Numerical Simulation
, vol.17
, Issue.2
, pp. 1036-1042
-
-
An, X.1
Jiang, D.2
Zhao, M.3
Liu, C.4
-
2
-
-
84155186340
-
Forecasting tourism demand based on empirical mode decomposition and neural network
-
Chen C.F., Lai M.C., Yeh C.C. Forecasting tourism demand based on empirical mode decomposition and neural network. Knowledge-Based System 2012, 26:281-287.
-
(2012)
Knowledge-Based System
, vol.26
, pp. 281-287
-
-
Chen, C.F.1
Lai, M.C.2
Yeh, C.C.3
-
3
-
-
78649330188
-
Cross-correlation and the predictability of financial return series
-
Duan W.Q., Stanley H.E. Cross-correlation and the predictability of financial return series. Physica A 2011, 390(2):290-296.
-
(2011)
Physica A
, vol.390
, Issue.2
, pp. 290-296
-
-
Duan, W.Q.1
Stanley, H.E.2
-
4
-
-
79961127156
-
Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
-
Guo Z., Zhao W., Lu H., Wang J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012, 37(1):241-249.
-
(2012)
Renewable Energy
, vol.37
, Issue.1
, pp. 241-249
-
-
Guo, Z.1
Zhao, W.2
Lu, H.3
Wang, J.4
-
5
-
-
77956340248
-
Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting
-
Hadavandi E., Shavandi H., Ghanbari A. Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based System 2010, 23(8):800-808.
-
(2010)
Knowledge-Based System
, vol.23
, Issue.8
, pp. 800-808
-
-
Hadavandi, E.1
Shavandi, H.2
Ghanbari, A.3
-
6
-
-
78650261217
-
A hybrid slantlet denoising least squares support vector regression model for exchange rate prediction
-
He K., Lai K.K., Yen J. A hybrid slantlet denoising least squares support vector regression model for exchange rate prediction. Procedia Computer Science 2010, 1(1):2397-2405.
-
(2010)
Procedia Computer Science
, vol.1
, Issue.1
, pp. 2397-2405
-
-
He, K.1
Lai, K.K.2
Yen, J.3
-
7
-
-
5444236478
-
The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis
-
Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.C., Tung C.C., Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 1998, 454:903-995.
-
(1998)
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.C.4
Shih, H.H.5
Zheng, Q.6
Yen, N.C.7
Tung, C.C.8
Liu, H.H.9
-
9
-
-
77957853038
-
Chaos-based support vector regressions for exchange rate forecasting
-
Huang S.C., Chuang P.J., Wu C.F. Chaos-based support vector regressions for exchange rate forecasting. Expert Systems with Applications 2010, 37(12):8590-8598.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.12
, pp. 8590-8598
-
-
Huang, S.C.1
Chuang, P.J.2
Wu, C.F.3
-
10
-
-
33646145333
-
Dynamic reconstruction of chaotic systems from inter-spike intervals using least square support vector machine
-
Iplikci S. Dynamic reconstruction of chaotic systems from inter-spike intervals using least square support vector machine. Physica D 2006, 216:282-293.
-
(2006)
Physica D
, vol.216
, pp. 282-293
-
-
Iplikci, S.1
-
11
-
-
58149468814
-
Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
-
Khashei M., Bijari M., Ali Raissi Ardali G. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 2009, 72(4-6):956-967.
-
(2009)
Neurocomputing
, vol.72
, Issue.4-6
, pp. 956-967
-
-
Khashei, M.1
Bijari, M.2
Ali Raissi Ardali, G.3
-
12
-
-
54049100450
-
Regularized least squares fuzzy support vector regression for financial time series forecasting
-
Khemchandani R., Jayadeva, Chandra S. Regularized least squares fuzzy support vector regression for financial time series forecasting. Expert Systems with Applications 2009, 36(1):132-138.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.1
, pp. 132-138
-
-
Khemchandani, R.1
Jayadeva Chandra, S.2
-
13
-
-
84868502438
-
Revenue forecasting using a least-squares support vector regression model in a fuzzy environment
-
in press. doi:10.1016/j.ins.2011.09.003
-
Lin, K.P., Pai, P.F., Lu, Y.M., Chang, P.T., in press. Revenue forecasting using a least-squares support vector regression model in a fuzzy environment. Information Sciences. doi:10.1016/j.ins.2011.09.003.
-
Information Sciences.
-
-
Lin, K.P.1
Pai, P.F.2
Lu, Y.M.3
Chang, P.T.4
-
14
-
-
64949130686
-
Financial time series forecasting using independent component analysis and support vector machine
-
Lu C.J., Lee T.S., Chiu C.C. Financial time series forecasting using independent component analysis and support vector machine. Decision Support Systems 2009, 47(2):115-125.
-
(2009)
Decision Support Systems
, vol.47
, Issue.2
, pp. 115-125
-
-
Lu, C.J.1
Lee, T.S.2
Chiu, C.C.3
-
15
-
-
77958504152
-
Exchange rate prediction using hybrid neural networks and trading indications
-
Ni H., Yin H. Exchange rate prediction using hybrid neural networks and trading indications. Neurocomputing 2009, 72(13-15):2815-2823.
-
(2009)
Neurocomputing
, vol.72
, Issue.13-15
, pp. 2815-2823
-
-
Ni, H.1
Yin, H.2
-
16
-
-
0032638628
-
Least squares support vector machine classifier
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifier. Neural Processing Letters 1999, 9(3):293-300.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
17
-
-
80052280842
-
Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation
-
Tang B., Dong S., Song T. Method for eliminating mode mixing of empirical mode decomposition based on the revised blind source separation. Signal Processing 2012, 92(1):248-258.
-
(2012)
Signal Processing
, vol.92
, Issue.1
, pp. 248-258
-
-
Tang, B.1
Dong, S.2
Song, T.3
-
18
-
-
0001023715
-
Application of support vector machines in financial time series forecasting
-
Tay F.E.H., Cao L. Application of support vector machines in financial time series forecasting. Omega 2001, 29(4):309-317.
-
(2001)
Omega
, vol.29
, Issue.4
, pp. 309-317
-
-
Tay, F.E.H.1
Cao, L.2
-
19
-
-
0242288903
-
Benchmarking least squares support vector machine classifier
-
Van Gestel T., Suykens J.A.K., Baesens B., Viaene S., Vanthienen J., Dedene G., De Moor B., Vandewalle J. Benchmarking least squares support vector machine classifier. Machine Learning 2004, 54(1):5-32.
-
(2004)
Machine Learning
, vol.54
, Issue.1
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
De Moor, B.7
Vandewalle, J.8
-
22
-
-
84867655489
-
Support vector method for function approximation, regression estimation, and signal processing
-
2000, Springer-Verlag, New York, M. Mozer, V. Vapnik (Eds.)
-
Vapnik V., Golowich S., Smola A. Support vector method for function approximation, regression estimation, and signal processing. The Nature of Statistical Learning Theory 1997, 2000, Springer-Verlag, New York. Second ed. M. Mozer, V. Vapnik (Eds.).
-
(1997)
The Nature of Statistical Learning Theory
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.3
-
23
-
-
80655146998
-
A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China
-
Wang S., Yu L., Tang L., Wang S. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. Energy 2011, 36(11):6542-6554.
-
(2011)
Energy
, vol.36
, Issue.11
, pp. 6542-6554
-
-
Wang, S.1
Yu, L.2
Tang, L.3
Wang, S.4
-
24
-
-
48049095703
-
Forecasting crude oil price with EMD-based neural network ensemble learning paradigm
-
Yu L., Wang S.Y., Lai K.K. Forecasting crude oil price with EMD-based neural network ensemble learning paradigm. Energy Economics 2008, 30(5):2623-2635.
-
(2008)
Energy Economics
, vol.30
, Issue.5
, pp. 2623-2635
-
-
Yu, L.1
Wang, S.Y.2
Lai, K.K.3
-
25
-
-
0035480297
-
An investigation of neural networks for linear time series forecasting
-
Zhang G.P. An investigation of neural networks for linear time series forecasting. Computers and Operations Research 2001, 28(12):1183-1202.
-
(2001)
Computers and Operations Research
, vol.28
, Issue.12
, pp. 1183-1202
-
-
Zhang, G.P.1
-
26
-
-
0003123930
-
Forecasting with artificial neural networks: the state of the art
-
Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting 1998, 14(1):35-62.
-
(1998)
International Journal of Forecasting
, vol.14
, Issue.1
, pp. 35-62
-
-
Zhang, G.1
Patuwo, B.E.2
Hu, M.Y.3
|