메뉴 건너뛰기




Volumn 21, Issue 6, 2012, Pages 1281-1295

Structure optimization of neural network for dynamic system modeling using multi-objective genetic algorithm

Author keywords

Artificial neural network; Model structure selection; Multi objective genetic algorithm; NSGA II; System identification

Indexed keywords

ADEQUATE MODELS; ALTERNATIVE ALGORITHMS; DYNAMIC SYSTEM MODELING; FUNCTION APPROXIMATION; MODEL PARAMETERS; MODEL STRUCTURE SELECTION; MULTI OBJECTIVE OPTIMIZATIONS (MOO); MULTI-OBJECTIVE GENETIC ALGORITHM; NETWORK STRUCTURES; NEURAL NETWORK MODEL; NEURAL NETWORK TOPOLOGY; NON-LINEAR DYNAMIC SYSTEMS; NSGA-II; OPTIMUM STRUCTURES; PARETO-OPTIMAL SETS; PREDICTIVE ACCURACY; PRIOR KNOWLEDGE; PROCESS DATA; STRUCTURE OPTIMIZATION;

EID: 84865650295     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0560-3     Document Type: Article
Times cited : (58)

References (29)
  • 2
    • 84877479752 scopus 로고
    • Properties of neural networks with applications to modeling non-linear dynamical systems
    • Billings SA, Jamaluddin H, Chen S (1992) Properties of neural networks with applications to modeling non-linear dynamical systems. Int J Control 55(1): 193-224.
    • (1992) Int J Control , vol.55 , Issue.1 , pp. 193-224
    • Billings, S.A.1    Jamaluddin, H.2    Chen, S.3
  • 3
    • 0025448276 scopus 로고
    • Non-linear system identification using neural networks
    • Chen S, Billings SA, Grant PM (1990) Non-linear system identification using neural networks. Int J Control 51(6): 1191-1214.
    • (1990) Int J Control , vol.51 , Issue.6 , pp. 1191-1214
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 4
    • 47649127783 scopus 로고    scopus 로고
    • Improvements of nonlinear dynamic modeling of hot-film MAF sensor
    • Xua KJ, Zhang J, Wang XF, Teng Q, Tan J (2008) Improvements of nonlinear dynamic modeling of hot-film MAF sensor. Sens Actuators A 147: 34-40.
    • (2008) Sens Actuators A , vol.147 , pp. 34-40
    • Xua, K.J.1    Zhang, J.2    Wang, X.F.3    Teng, Q.4    Tan, J.5
  • 5
    • 84898932856 scopus 로고    scopus 로고
    • Overfitting in neural networks: backpropagation, conjugate gradient, and early stopping
    • Caruana R, Lawrence S, Giles CL (2001) Overfitting in neural networks: backpropagation, conjugate gradient, and early stopping. Adv Neural Inf Process Syst 13: 402-408.
    • (2001) Adv Neural Inf Process Syst , vol.13 , pp. 402-408
    • Caruana, R.1    Lawrence, S.2    Giles, C.L.3
  • 6
    • 0028516118 scopus 로고
    • Feed-forward neural networks: Why network size is so important
    • Bebis G, Georgiopoulos M (1994) Feed-forward neural networks: why network size is so important. IEEE Potentials 13(4): 27-31.
    • (1994) IEEE Potentials , vol.13 , Issue.4 , pp. 27-31
    • Bebis, G.1    Georgiopoulos, M.2
  • 7
    • 0024124323 scopus 로고
    • Proceedings of the IEEE international conference on neural networks, San Diego
    • Sietsma J, Dow RJF (1988) Neural net pruning-why and how. In: Proceedings of the IEEE international conference on neural networks, San Diego, pp 325-333.
    • (1988) Neural Net Pruning-why and How , pp. 325-333
    • Sietsma, J.1    Dow, R.J.F.2
  • 8
    • 12344258014 scopus 로고    scopus 로고
    • Model structure selection for discrete-time nonlinear systems using genetic algorithm
    • Ahmad R, Jamaluddin H, Hussain MA (2004) Model structure selection for discrete-time nonlinear systems using genetic algorithm. J Syst Control Eng 218(12): 85-98.
    • (2004) J Syst Control Eng , vol.218 , Issue.12 , pp. 85-98
    • Ahmad, R.1    Jamaluddin, H.2    Hussain, M.A.3
  • 9
    • 33745442476 scopus 로고    scopus 로고
    • Genetic optimization driven multi layer hybrid fuzzy neural networks
    • SK Oh, Pedrycz W (2006) Genetic optimization driven multi layer hybrid fuzzy neural networks. Simul Model Pract Theory 14: 597-613.
    • (2006) Simul Model Pract Theory , vol.14 , pp. 597-613
    • Sk, O.1    Pedrycz, W.2
  • 10
    • 34848878056 scopus 로고    scopus 로고
    • A genetic approach to modeling fuzzy systems based on information granulation and successive generation-based evolution method
    • Park KJ, Pedrycz W, Oh SK (2007) A genetic approach to modeling fuzzy systems based on information granulation and successive generation-based evolution method. Simul Model Pract Theory 15: 1128-1145.
    • (2007) Simul Model Pract Theory , vol.15 , pp. 1128-1145
    • Park, K.J.1    Pedrycz, W.2    Oh, S.K.3
  • 11
    • 0026624310 scopus 로고
    • Genetic generation of both the weights and architecture for a neural network
    • IEEE Press, Seattle
    • Koza YJR, Rice JP (1991) Genetic generation of both the weights and architecture for a neural network. In: IEEE international joint conference on neural networks, vol 2. IEEE Press, Seattle, pp 397-404.
    • (1991) IEEE International Joint Conference On Neural Networks , vol.2 , pp. 397-404
    • Koza, Y.J.R.1    Rice, J.P.2
  • 14
    • 0001953837 scopus 로고
    • Genetic algorithms for multi-objective optimization: Formulation, discussion and generalisation
    • Morgan Kaufman, San Mateo
    • Fonseca CM, Fleming PJ (1993) Genetic algorithms for multi-objective optimization: formulation, discussion and generalisation. In: Proceedings of the fifth international conference on genetic algorithms, Morgan Kaufman, San Mateo, pp 416-423.
    • (1993) Proceedings of the Fifth International Conference On Genetic Algorithms , pp. 416-423
    • Fonseca, C.M.1    Fleming, P.J.2
  • 15
    • 0000852513 scopus 로고
    • Multi-objective optimization using non-dominated sorting in genetic algorithms
    • Srinivas N, Deb K (1994) Multi-objective optimization using non-dominated sorting in genetic algorithms. Evol Comput 2(3): 221-248.
    • (1994) Evol Comput , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 16
    • 15344342907 scopus 로고    scopus 로고
    • Pareto evolutionary neural networks
    • Fieldsend JE, Singh S (2005) Pareto evolutionary neural networks. IEEE Trans Neural Netw 16(2): 338-354.
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.2 , pp. 338-354
    • Fieldsend, J.E.1    Singh, S.2
  • 17
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up backpropagation using multiobjective evolutionary algorithms
    • Abbass HA (2003) Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Comput 15(11): 2705-2726.
    • (2003) Neural Comput , vol.15 , Issue.11 , pp. 2705-2726
    • Abbass, H.A.1
  • 18
    • 0344585403 scopus 로고    scopus 로고
    • Simultaneous optimization of neural network function and architecture algorithm
    • Sexton RS, Dorsey RE, Sikander NA (2004) Simultaneous optimization of neural network function and architecture algorithm. Decis Support Syst 36: 283-296.
    • (2004) Decis Support Syst , vol.36 , pp. 283-296
    • Sexton, R.S.1    Dorsey, R.E.2    Sikander, N.A.3
  • 19
    • 0742321288 scopus 로고    scopus 로고
    • Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • Gonzalez J, Rojas I, Ortega J, Pomares H, Fernandez J, Diaz A (2003) Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Trans Neural Netw 14(1): 1478-1495.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.1 , pp. 1478-1495
    • Gonzalez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernandez, J.5    Diaz, A.6
  • 20
    • 27644521339 scopus 로고    scopus 로고
    • Robustness, evolvability and optimality in evolutionary neural networks
    • Palmes S (2005) Robustness, evolvability and optimality in evolutionary neural networks. Biosystems 82(2): 168-188.
    • (2005) Biosystems , vol.82 , Issue.2 , pp. 168-188
    • Palmes, S.1
  • 21
    • 33847276077 scopus 로고    scopus 로고
    • Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II
    • Mandal D, Pal SK, Sah P (2007) Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J Mater Process Technol 186: 154-162.
    • (2007) J Mater Process Technol , vol.186 , pp. 154-162
    • Mandal, D.1    Pal, S.K.2    Sah, P.3
  • 22
    • 0033130747 scopus 로고    scopus 로고
    • Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing
    • Sexton RS, Dorsey RE, Johnson JD (1999) Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing. Eur J Oper Res 114: 589-601.
    • (1999) Eur J Oper Res , vol.114 , pp. 589-601
    • Sexton, R.S.1    Dorsey, R.E.2    Johnson, J.D.3
  • 24
    • 0347603423 scopus 로고    scopus 로고
    • Nonlinear system identification using neural networks trained with natural gradient descent
    • Ibnkahla M (2003) Nonlinear system identification using neural networks trained with natural gradient descent. EURASIP J Appl Signal Process 12: 1229-1237.
    • (2003) EURASIP J Appl Signal Process , vol.12 , pp. 1229-1237
    • Ibnkahla, M.1
  • 25
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2: 183-192.
    • (1989) Neural Netw , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 27
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multi-objective evolutionary algorithm: empirical results
    • Zitzler E, Deb K, Thiele L (2000) Comparison of multi-objective evolutionary algorithm: empirical results. Evol Comput 8: 173-195.
    • (2000) Evol Comput , vol.8 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 28
    • 0022752513 scopus 로고
    • Correlation based model validity tests for non-linear models
    • Billings SA, Voon WSF (1986) Correlation based model validity tests for non-linear models. Int J Control 44(1): 235-244.
    • (1986) Int J Control , vol.44 , Issue.1 , pp. 235-244
    • Billings, S.A.1    Voon, W.S.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.