메뉴 건너뛰기




Volumn 24, Issue 4, 2012, Pages 301-313

Earthquakes magnitude predication using artificial neural network in northern Red Sea area

Author keywords

Artificial intelligent; Artificial neural network; Back propagation; Earthquake; Multilayer neural network; Northern Red Sea; Prediction system

Indexed keywords


EID: 84865644360     PISSN: 10183647     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jksus.2011.05.002     Document Type: Article
Times cited : (78)

References (28)
  • 1
    • 84865617099 scopus 로고
    • A simple way to look at a Bayesian model for the statistics of earthquake prediction
    • Anderson J. A simple way to look at a Bayesian model for the statistics of earthquake prediction. Bulletin of the Seismological Society of America 1981, 71:1929-1931.
    • (1981) Bulletin of the Seismological Society of America , vol.71 , pp. 1929-1931
    • Anderson, J.1
  • 2
    • 40549112366 scopus 로고    scopus 로고
    • PreSIS: a neural network-based approach to earthquake early warning for finite faults
    • Bose M., Wenzel F., Mustafa E. PreSIS: a neural network-based approach to earthquake early warning for finite faults. Bulletin of the Seismological Society of America 2008, 98:366-382.
    • (2008) Bulletin of the Seismological Society of America , vol.98 , pp. 366-382
    • Bose, M.1    Wenzel, F.2    Mustafa, E.3
  • 3
    • 84866122352 scopus 로고    scopus 로고
    • Multi-layer neural network for precursor signal detection in electromagnetic wave observation applied to great earthquake prediction
    • 31-31
    • Itai A., Yasukawa H., Takumi I., Hata M. Multi-layer neural network for precursor signal detection in electromagnetic wave observation applied to great earthquake prediction. IEEE-Eurasip Nonlinear Signal and Image Processing (NSIP) 2005, 31-31.
    • (2005) IEEE-Eurasip Nonlinear Signal and Image Processing (NSIP)
    • Itai, A.1    Yasukawa, H.2    Takumi, I.3    Hata, M.4
  • 6
    • 58349121827 scopus 로고    scopus 로고
    • Model dissection from earthquake time series: a comparative analysis using modern non-linear forecasting and artificial neural network approaches
    • Lakshmi S., Tiwari R. Model dissection from earthquake time series: a comparative analysis using modern non-linear forecasting and artificial neural network approaches. Computers & Geosciences 2009, 35(2):191-204.
    • (2009) Computers & Geosciences , vol.35 , Issue.2 , pp. 191-204
    • Lakshmi, S.1    Tiwari, R.2
  • 7
    • 0025628129 scopus 로고
    • Intermediate term earthquake prediction in the area of Greece: application of the algorithm M8
    • Latoussakis J., Kossobokov V. Intermediate term earthquake prediction in the area of Greece: application of the algorithm M8. Pure and Applied Geophysics 1990, 134:261-282.
    • (1990) Pure and Applied Geophysics , vol.134 , pp. 261-282
    • Latoussakis, J.1    Kossobokov, V.2
  • 8
    • 0041306115 scopus 로고    scopus 로고
    • On the correlation of seismicity with geophysical lineaments over the Indian subcontinent
    • Murthy Y. On the correlation of seismicity with geophysical lineaments over the Indian subcontinent. Current Science 2002, 83:760-766.
    • (2002) Current Science , vol.83 , pp. 760-766
    • Murthy, Y.1
  • 9
    • 0035992737 scopus 로고    scopus 로고
    • Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction
    • Negarestani A., Setayeshi S., Ghannadi-Maragheh M., Akashe B. Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction. Journal of Environmental Radioactivity 2002, 62(3):225.
    • (2002) Journal of Environmental Radioactivity , vol.62 , Issue.3 , pp. 225
    • Negarestani, A.1    Setayeshi, S.2    Ghannadi-Maragheh, M.3    Akashe, B.4
  • 10
    • 29144497217 scopus 로고    scopus 로고
    • Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks
    • Ni Y., Zhou X., Ko J. Experimental investigation of seismic damage identification using PCA-compressed frequency response functions and neural networks. Journal of Sound & Vibration 2006, 290:242-263.
    • (2006) Journal of Sound & Vibration , vol.290 , pp. 242-263
    • Ni, Y.1    Zhou, X.2    Ko, J.3
  • 11
    • 29144512794 scopus 로고    scopus 로고
    • Self-organized maps based neural networks for detection of possible earthquake precursory electric field patterns
    • Ozerdem M., Ustundag B., Demirer R. Self-organized maps based neural networks for detection of possible earthquake precursory electric field patterns. Advances in Engineering Software 2006, 37(4):207-217.
    • (2006) Advances in Engineering Software , vol.37 , Issue.4 , pp. 207-217
    • Ozerdem, M.1    Ustundag, B.2    Demirer, R.3
  • 12
    • 34047171604 scopus 로고    scopus 로고
    • Neural network models for earthquake magnitude prediction using multiple seismicity indicators
    • Panakkat A., Adeli H. Neural network models for earthquake magnitude prediction using multiple seismicity indicators. International Journal of Neural Systems 2007, 17:13-33.
    • (2007) International Journal of Neural Systems , vol.17 , pp. 13-33
    • Panakkat, A.1    Adeli, H.2
  • 13
    • 62749176440 scopus 로고    scopus 로고
    • Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators
    • Panakkat A., Adeli H. Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators. Computer-Aided Civil & Infrastructure Engineering 2009, (4):280-292.
    • (2009) Computer-Aided Civil & Infrastructure Engineering , Issue.4 , pp. 280-292
    • Panakkat, A.1    Adeli, H.2
  • 14
    • 84865656074 scopus 로고    scopus 로고
    • Estimation of focal parameters for Uttarkashi earthquake using peak ground horizontal accelerations
    • Paul A., Sharma M., Sing V. Estimation of focal parameters for Uttarkashi earthquake using peak ground horizontal accelerations. ISET Journal of Earthquake Technology 1998, 35:1-8.
    • (1998) ISET Journal of Earthquake Technology , vol.35 , pp. 1-8
    • Paul, A.1    Sharma, M.2    Sing, V.3
  • 18
  • 19
    • 70449515776 scopus 로고    scopus 로고
    • Application of ANN to prediction of earthquake influence
    • Su, You-Po, Zhu, Qing-Jie, Manchester
    • Su, You-Po, Zhu, Qing-Jie, 2009. Application of ANN to prediction of earthquake influence. In: Second International Conference on Information and Computing Science (ICIC'09), Manchester, vol. 2, pp. 234-237.
    • (2009) Second International Conference on Information and Computing Science (ICIC'09) , vol.2 , pp. 234-237
  • 21
    • 0021642270 scopus 로고
    • Physical properties of the variations of the electric field of the Earth preceding earthquakes I
    • Varotsos P., Alexopoulos K. Physical properties of the variations of the electric field of the Earth preceding earthquakes I. Tectonophysics 1984, 110:73-98.
    • (1984) Tectonophysics , vol.110 , pp. 73-98
    • Varotsos, P.1    Alexopoulos, K.2
  • 22
    • 0021642274 scopus 로고
    • Physical properties of the variations of the electric field of the Earth preceding earthquakes II
    • Varotsos P., Alexopoulos K. Physical properties of the variations of the electric field of the Earth preceding earthquakes II. Tectonophysics 1984, 110:99-125.
    • (1984) Tectonophysics , vol.110 , pp. 99-125
    • Varotsos, P.1    Alexopoulos, K.2
  • 26
    • 33745885415 scopus 로고    scopus 로고
    • Estimation of the Earthquakes in Chinese Mainland by using artificial neural networks (in Chinese)
    • Wang W., Cao X., Song X. Estimation of the Earthquakes in Chinese Mainland by using artificial neural networks (in Chinese). Chinese Journal of Earthquakes 2001, 3(21):10-14.
    • (2001) Chinese Journal of Earthquakes , vol.3 , Issue.21 , pp. 10-14
    • Wang, W.1    Cao, X.2    Song, X.3
  • 28
    • 27844564582 scopus 로고
    • Prediction of earthquake damages and reliability analysis using fuzzy sets
    • Zhihuan, Zhong, Junjing, Yu, College Park, MD, USA
    • Zhihuan, Zhong, Junjing, Yu, 1990. Prediction of earthquake damages and reliability analysis using fuzzy sets. In: First International Symposium on Uncertainty Modeling and Analysis, College Park, MD, USA, pp. 173-176.
    • (1990) First International Symposium on Uncertainty Modeling and Analysis , pp. 173-176


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.