메뉴 건너뛰기




Volumn 21, Issue 5, 2012, Pages 891-904

Finding all roots of 2 × 2 nonlinear algebraic systems using back-propagation neural networks

Author keywords

Generalized delta rule; Neural networks; Nonlinear algebraic systems

Indexed keywords

BACK PROPAGATION NEURAL NETWORKS; CLASSICAL BACK-PROPAGATION; FEED FORWARD; GENERALIZED DELTA RULE; MULTIPLE ROOTS; NON-LINEAR ALGEBRAIC SYSTEM; NUMERICAL ESTIMATION; SPEED OF CONVERGENCE; THEORETICAL VALUES; TRAINING ALGORITHMS;

EID: 84865618944     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0488-z     Document Type: Article
Times cited : (16)

References (28)
  • 5
    • 0008457544 scopus 로고
    • Conjugate direction methods for linear and nonlinear systems of algebraic equations
    • Numerical Methods, Miskolc, Hungary, 1986; Edited by R6zsa P and Greenspan D, North Holland, Amsterdam, Netherlands
    • Abaffy J, Galantai A (1987) Conjugate direction methods for linear and nonlinear systems of algebraic equations. Colloquia Mathematica Soc. Jfinos Bolyai. Numerical Methods, Miskolc, Hungary, 1986; Edited by R6zsa P and Greenspan D, North Holland, Amsterdam, Netherlands, vol 50, pp 481-502.
    • (1987) Colloquia Mathematica Soc. Jfinos Bolyai , vol.50 , pp. 481-502
    • Abaffy, J.1    Galantai, A.2
  • 6
    • 0001015577 scopus 로고
    • The local convergence of ABS methods for nonlinear algebraic equations
    • Abaffy J, Galantai A, Spedicato E (1987) The local convergence of ABS methods for nonlinear algebraic equations. Numerische Mathematik 51: 429-439.
    • (1987) Numerische Mathematik , vol.51 , pp. 429-439
    • Abaffy, J.1    Galantai, A.2    Spedicato, E.3
  • 7
    • 0041115277 scopus 로고    scopus 로고
    • Quasi-Newton ABS methods for solving nonlinear algebraic systems of equations
    • Galantai A, Jeney A (1996) Quasi-Newton ABS methods for solving nonlinear algebraic systems of equations. J Opt Theory Appl 89(3): 561-573.
    • (1996) J Opt Theory Appl , vol.89 , Issue.3 , pp. 561-573
    • Galantai, A.1    Jeney, A.2
  • 8
    • 53349175647 scopus 로고    scopus 로고
    • An approach to solving nonlinear algebraic systems. 2
    • Kublanovskaya VN, Simonova VN (1996) An approach to solving nonlinear algebraic systems. 2. J Math Sci 79(3): 1077-1092.
    • (1996) J Math Sci , vol.79 , Issue.3 , pp. 1077-1092
    • Kublanovskaya, V.N.1    Simonova, V.N.2
  • 11
    • 0000146490 scopus 로고    scopus 로고
    • Find all solutions of nonlinear systems of equations using linear programming with guaranteed accuracies
    • Nakaya Y, Oishi S (1998) Find all solutions of nonlinear systems of equations using linear programming with guaranteed accuracies. J Univ Comput Sci 4(2): 171-177.
    • (1998) J Univ Comput Sci , vol.4 , Issue.2 , pp. 171-177
    • Nakaya, Y.1    Oishi, S.2
  • 13
    • 4244065987 scopus 로고
    • A combined method for enclosing all solutions of nonlinear systems of polynomial equations
    • March, Springer, Berlin
    • Chistine J, Ralz D, Nerep K, PauP{cyrillic} (March 1995) A combined method for enclosing all solutions of nonlinear systems of polynomial equations. Reliable computing. Springer, Berlin 1(1): 41-64.
    • (1995) Reliable computing , vol.1 , Issue.1 , pp. 41-64
    • Chistine, J.1    Ralz, D.2    Nerep, K.3    Pau4
  • 14
    • 34547292695 scopus 로고    scopus 로고
    • Finding all solutions of systems of nonlinear equations with free variables
    • Tsai T-F, Lin M-H (2007) Finding all solutions of systems of nonlinear equations with free variables. Eng Opt 39(6): 649-659.
    • (2007) Eng Opt , vol.39 , Issue.6 , pp. 649-659
    • Tsai, T.-F.1    Lin, M.-H.2
  • 15
    • 0035892557 scopus 로고    scopus 로고
    • An algorithm for finding all solutions of a nonlinear system
    • Michael WS, Chun C (2001) An algorithm for finding all solutions of a nonlinear system. J Comput Appl Math 137(2): 293-315.
    • (2001) J Comput Appl Math , vol.137 , Issue.2 , pp. 293-315
    • Michael, W.S.1    Chun, C.2
  • 17
    • 34347343502 scopus 로고    scopus 로고
    • September, online document found in the Arxiv repository, ITEP, Moscow, Russia
    • Dolotin V, Morozov A (September 2006) Introduction to nonlinear algebra v. 2. online document found in the Arxiv repository (http://www. arxiv. org), ITEP, Moscow, Russia.
    • (2006) Introduction to nonlinear algebra v. 2
    • Dolotin, V.1    Morozov, A.2
  • 18
    • 70449706090 scopus 로고    scopus 로고
    • Existence of solutions for a nonlinear algebraic system
    • Article ID 785068, available online from the
    • Zhang G, Bi L, Existence of solutions for a nonlinear algebraic system. Discrete dynamics in nature and society, Volume 2009, Article ID 785068, available online from the URL http://www. hindawi. com/journals/ddns/2009/785068. html.
    • Discrete dynamics in nature and society , vol.2009
    • Zhang, G.1    Bi, L.2
  • 22
    • 78650830126 scopus 로고    scopus 로고
    • Modified Hopfield neural network approach for solving nonlinear algebraic equations
    • EL_14_01_23 (advance online publication: 12 February)
    • Mishra D, Kalva PK, Modified Hopfield neural network approach for solving nonlinear algebraic equations. Engineering Letters, 14: 1, EL_14_01_23 (advance online publication: 12 February 2007).
    • (2007) Engineering Letters , vol.14 , pp. 1
    • Mishra, D.1    Kalva, P.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.